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Admissible Hierarchical Bayes Estimators of a Multivariate
Normal Mean Shrinking towards a Regression Surfacev

Byung Yup Cho?, Kuey Chung Choi3, In Hong Chang4

Abstract

Consider the problem of estimating a multivariate normal mean with an unknown
covarience matrix under a weighted sum of squared error losses. We first provide
hierarchical Bayes estimators which shrink the usual (maximum likelihood, uniformly
minimum variance unbiased) estimator towards a regression surface and then prove
the admissibility of these estimators using Blyth’s (1951) method.

1. Introduction

Recently there has been much discussion of the respective merits of bayesian approaches to
statistics. Hierarchical Bayes (HB) method is becoming increasingly popular in Bayesian,
especailly in the context of simultaneous estimation of several parameters. The HB procedure
models the prior distribution in stages. In the first stage, conditional on A=J1, 8,’s are

independently identically distributed with a prior [T(1). In the second stage, a prior

distribution (often improper) is assigned to /. This is an examples of a two stage prior. The
idea can be generalized to multistage priors. The term hierarchical Bayes was first used by
Good (1965). Lindley and Smith (1972) called such prior multistage priors. Also, Lindley and
Smith (1972) developed Bayesian alternative to least squares estimates for the linear model
within the framework of a hierarchical prior structure. Smith (1973) extened the use of the
general Bayesian linear Model to estimation of parameters in third stage of the hierarchy, as
well as the second stage. Tiao and Tan (1965) utilize Bayesian methods to analyze random
effect models in the analysis of variance. Strawderman (1971) proposed the HB procedure in

estimating the mean vector 6 of multivariate normal distribution with covariance matrix,
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which is a multiple of the identity matrix under the sum of squared error loss. Goel and De
Groot (1981) illustrated the Bayesian analysis of covariance components for univariate normal
model and general linear hierarchical model. Faith (1978) generalized the HB approach of
strawderman (1971). Berger and Robert (1990) obtained subjective hierarchical Bayes estimator
of a multivariate normal mean. George, et al (1994) proposed Fully Bayesian hierarchical
analysis for exponential familes via Monte carlo computation. Nagi and stroud (1994) obtained
Hierarchical Bayes simultaneous estimator of poisson means.

Let conditional on @, r, b, and a, X~ N,(8, r_II,,), and let the conditional proper prior
distribution of @ given 7, b, and a be NyZb, (ar) _111,). Let b have marginally the

improper uniform distribution over R’ and #» have the density »*, @ >0, over the interval
(0, ).

The purpose of this thesis is to produce HB estimators of & under a weighted sum of
squared error losses L(8,7,d)=n0—d)'(0—d) and to verify the admissibility of these

estimators.

2. Hierarchical Bayes Estimators

In this Section, we derive HB estimators when & is known and a is unknown,
respectively.

2.1 Hierarchical Bayes estimator for known a

We now proceed to find the HB estimator of @, in the model
(D) conditional on 8,7, b, X ~ N,(0, » 'L,);
(i) conditional on 7, 5,8 ~ N(Zb, (ar) _111,), where Z is an pXg known regression
matrix and b is an ¢X1 unknown vector;

(iii) marginally &, and 7 are independently distributed with & uniform over R, and

r~r® ad>0, over (0, o).

Then joint (improper) density of X, @, b, and 7
ﬂx' 0’ b' r)

o« pPta exp[—%(x— 0)'(x—8)]
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. exp[——“zﬁ{[b —(Z2D'Z0YZZIb—(Z2 ' Z 61}

. exp[—%f{ 0°'0—02Z2Z01] 2.1)

Also, the joint (improper) density of X, 8, and # becomes

Ax, 8, 7)
o« D expl— F{(x~0)(x—0)+al 86— 2(Z2) ' Z 6])]
_ oD expl— 5 {x'x-22" 6+ 6 6+al 61— 2(Z2) " Z)681)]

o exp[—g”[{l9—[a(I—Z(Z'Z)'IZ')+I]_1 x}
AaI—-2(Z2)" 1 Z)+1)

A0-laUI-2(z2)'Z)+11" x}] . 2.2)
Hence, conditional on # and x, the distribution of @ is
NlaU,—Z(Z2D ' Z)+1,) ' x, ¥laI, - 2(Z2) ' Z)+1,] ")
Therefore, the posterior mean of @ given 7 and x is given by

EO\r, x)={alI-2Z(Z2D'Z1+1}) 'x . 2.3)
By using the double expectations, we get
E(8|x)=E[E(8]r, x)|x]

=FlaI-2(Z2)'Z)+I1 x | x}

=[a(I-2(Z2)'Z)+I1 ' x . (2.4)
Since,
_ -1 -1 1 a -1
([+a(I-2(Z2) " Z)] =7+ I+ Z+1 Z(Z2) ' 7. 25)

Hence, from (2.4) and (2.5), HB estimator of @ is given by
0 s =E(61x)

={ail I+ a

a -1
4 2(Z2) Z} x. 26)
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2.2 Hierarchical Bayes estimator for unknown a

In this section, we derive a HB estimator for estimating multivariate normal mean using the

loss L(8,r, d) = {0—d)’ (6—d) in the model

(i) conditional on @, 7, b, and a, X ~ N, 6, r’llp);

(i) conditional on 7, b, and a, @ ~ N,(Zb, (ar) "'I,), where Z is a known pXgq
regression matrix, b is a gX1 unknown vector and @ is unknown;

(i) b, 7, and @ are marginally independently distributed with B uniform over R?,

r~r?% over (0,), and @ has the Type Il beta distribution with the density
g(@=a""'1+a) "2, 50, >0, a<q—1.

Theorem 2.1 For the hierarchical model given in the above, the hierarchical Bayes estimator
A~
01ﬂ3 is

B = E(01x)

i p Q_a“'l ’ —1 rpe
pta-a—1 *t prg—a-12Z2) Z'x.

Proof. The joint (improper) density of X, 8, b, @, and 7 is given by
Ax,6,0b,a,7)

b
< rexpl — 5 (2~ 0)'(x—0)] (ar) * expl —4r16-2b°]

. aqﬁl(l +a) —(p+q) »©

Dyg
= plora, 2 1)(1+a)’(“’+")exp[——2’:(Jc—49)'(51:—49)]
cexpl—F(b—(ZD'Z0) ZZ(b—(ZD) ' Z 6)}]

-exp[—!g—’ b'0+£’2l 0Z2(Z2)'Z6) . @7

Now, integrating with respect to & in (2.7), we find that the joint (improper) density of X ,
@, a, and 7 is given by
Ax, 0,a,7)
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-2 (.2 l_)
o 2)a 272 1(1+a)_(”+")exp[—%{x'x—Zx'o%-0'(9}]

< ¥

. exp[—ﬁz—’—{ 0UI—-2(Z2 7)o}

(p+a~2) (2+4-1) _ ,
24t "(1+a) (“")exp[—frx x)

. exp[—%[{0—[a(I—Z(Z'Z)_1Z')+I]_1 x}{aI-2(Z27'Z)+1)

{0—[aI-2Z(Zz2)'Z)+N17" x}]]
. exp[—-z’: 2 [aI-2(Z2'Z)+N7 x] (2.8)

Therefore, conditional on 7, @, and x,
(9~N,b([a(I—Z(Z'Z)_IZ')+I]-1 x, AaI-2(Z2) ' Z)+1))

Hence, the posterior mean of 8, for given 7,a, and x becomes
Eblr,a,0)=[aI-2(Z27'Z)+11" x (2.9)
And by using triple expectations, we get the posterior mean. of O given x as
E(0|x) =ELE{E(8|r,a,x)la, x}|x]
=K E[aI-Z(ZD' Z)+117" x |a, x}x]
=Hla(I-2Z(Z2)"' Z)+I]17" x |x]
=B 1+ -2 2227 Z1x) 1]

a+1 at+l
_ 1 _a -1
= E( | |x)x + EX 741 Ix)Z(Z2)"" Z x. (2.10)

Also, the joint (improper) density of X, 8,a, and 7 is given by (2.8), and then integrating

(2.8) with respect to @ gives the joint density of X, a, and »
Ax,7,a)

G+a-$) E+4-D _
2 2 a 272 (1+a) (p+q)

<y

Hal-2(Zz2 2)+D 1

. exp[—%x'{I—[a(I—Z(Z'Z)_IZ')+I]_1}x]
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Dig gy (£42
E+a-4) 2+

-1 ~ )
=7 a2 ? (1+a) 9+ %"

. exp[—%x'{l——[a(I—Z(Z'Z)_lZ')-l-I]—I}x] (2.11)

it E=(a(I—2(Z2)'Z)+I}"" then
EY=a(I-2(Z2)7 ' Z)+I|

1 ’%(ZZ) z l
Lzal”z (@1

=—L—le+n1l(z2-zG+n1r 2
1, (Z2) “

=(1+a)?.

Now integrating (2.11) with respect to 7 and using the Gamma distribution, we get the joint
density of X and a

Ax,a)

1,1 3, 1
+11 N -

(1+a) H§p+a—§q+l)

—(%lﬁa—%aﬂ)

Ax{I-[aI-Z(Z2)' Z)+I]1 Y x]

Go+da-n

=a (1+a)

1

(—%p—%q) (%ﬁ+a—§a+l)

r

~(ore—%a+p - p+a—%a+D

[x{I-2(Z2) ' Z}x] (2.12)

a
( a+l )
Then, the conditional density of @ given x is given by

Ralx) « g @@ D(] 4q) (p-atetD (2.13) -
From (2.13), it follows that

J; ( ai] )a (a—a—Z)(l +a) (—p—q+a+1)da

fo a (a-a—z)(l +a) (—l’—a+a+1)da

By o=
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[(q—a)]'(p) . ‘Ll I(Q"a+p) b(q—a)—l(l_b)ﬁ—ldb

- I'(q—)c;(H;) X [I(’(a—a)l'(p))
g—a—1)I\p) . g—a—1+p) ;(e—a-D-177 __ 3 p-1
No—a1t9 b Taa ity (1-)""db
—_gq—a—-1

From (2.10) and (2.14), the posterior mean of 8 given x becomes

E(o|x)=E(-5—1q|x)x+E( 2 0Z(ZD) " Zx

= yJ g—a—1 -1

2
Hence, the Hierarchical Bayes estimator Opyp is given by
k2

- b g—a—1 -1
- ptag—a—1 x+ p+q_a_l Z(ZZ) Zx. (2.16)

3. Admissible Hierarchical Bayes Estimators

The following theorem proves admissibility of ’éHB in (2.6) under the sum of squared

error losses Ly(8,d)=10—d|%.

Theorem 3.1 Suppose that ¥ is known the estimator

@ — 1 a ’ —1rp
b= L+ 27 42 D7'Z)X, a>0

is admissible under the sum of squared error losses.

Proof. Consider the sequence of priors {«,} for 8

where 7, is N,(0,r 'B,) with
B'=(a+Lr,—azz )7z 3.1

Then the posterior distribution of 8 given X=x is Ny(D,x, » 'D,), where
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D.'=1,+B,'

=L+(a++),—az(z’ 072
=(+aL-az(z 'z +11,

1,1
=D 1+ I (3.2)

— 1 a ’ —1ry
where D= "+ 1I,+ 241 VAVAVA AR

It suffices to show that
An:[B(”nvDX)—B(”m DnX)]'—'O (33)

as n — o, where B(r, 8) is the Bayes risk of an estimator & of @ with respect to a
prior 7.

The marginal distribution of X with respect to =, is
N0, ' L,—(L,+B,)™1™)

Hence,

-1
4,=@2n~* [1¥'DJ "2(8-Dx)'(6-Dx)

exp[ — %( 0—D,x)'D;(6—D,x)]

1
lr_l[Ip_(lp"’B;l)—l]_ll 2
expl — % x'[I,— (I,+B; ") '1x1d0 dx
2 4
1
—@0 ™~ [Ir'D,] " *(0-D,'(6—D,

expl —7(0—D,2)' D, (6~D,x)]

1
|V~1[Ip_ (Ip+B;l) _1] _ll 2

expl — % x'[I,—(I,+B;") 1xldodx
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_1
=@m 7 [ID4 ' ¥’y expl — 5 (y+Dx—D,x)'D;'(y+Dx~D,x)]
1
- |I,—D,| * expl —-~2’: x'(I,—D,)x] dydx
1
—@n ™7 [ID) *Z'Z exol— % Z'D;'Z]

1
1I,~D,| % exp[ — 7’ x'(I,—D,)xl dZdx

o=

1
=(@2n*F\DJ *II,—D)
fy'y [exp — %(y+Dx—D,,x) 'D,(y+Dx—D,x)]
—exp[ — —2’: y'D;ly]] expl — % x'(I,—D,)x] dydx

_? P 1
=20 *r2lI,-D,?

J (Dx—D,x)"(Dx—Dyx) +tr(r'D,) — X+ "Dy}

exp[—g x'(I,—D,)xldx
_b p 1
=@2n ? [[x'(D-D) (D-Dpxlr:,—D,*

exp[ —-—2’: x'(I,—D,)x] dx

=t »"YI,—-D,)"(D-D,)’(D—D,)]. (3.4)
Now, note that

D,=(p7'+1 )7

= Dt T 4 - AZD)7Z, (35)
1+, Na+1+-)
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a+L
L,—D,=—"+1, - T2 [~ AZ2)7Z, (36)
atl+-, 1+ Xa+1+-)

and
_ -1__ 1 na R
(I,=Dn) " =(na+a+( -7 I+ (a1 (natntl) AZ2'2)'Z). (€3]
Hence, a lengthy calculation gives
4,=r"'t{(1,—D,)"(D-D,) (D—D,)}- 0
o, 1 Do(m)  p(m)  py(m) . e
=7 G @ T o T o) T ) 70 @ mo e G

where p,(n) is the polynomial in » with degrees &.

By Blyth’s (1951) method (see Berger 1985, p547) 3113 is admissible.

1
+a

Theorem 32 Om=( 1y, L+ 11, AZ227'2 )X

=DX

is admissible under the sum of squared error losses L(8,r,d)=r|6—d|*> when 7 is
unknown.

Proof. First, note that for every fixed 7, agﬂ 1s admissible under the sum of squared error
losses by theorem 3.1.

Suppose /éHB is inadmissible. Then there exists another estimator 8 (X) such that

RO, 7, <R(8,7, Oys) for all (8,7
with strict inequality for some (8, 7), say (@, 7,) where R(0,r,3) dominates thé risk of
8 under the sum of squared error losses. Thus & dominates ’éHB when the parameter

space is (@, vy ), which contradicts to the admissibility of EHB for every fixed 7.

Remark 3.1 31{3 is also admissible for 8 under the weighted sum of squared error losses

L(8,rd )=rl6—d | since the weighting factor # does not affect the admissibility or

inadmissibility of an estimator.
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B3
Theorem 3.3 8yp is admissible for 8 (2.16) under the sum of squared error losses when
r is known.

Proof. Similar with the proof of Theorem 3.1 taking a= _4:;’_"1_ 0.

3
Theorem 3.4 @ is admissible for @ under the sum of squared error losses when 7 is

unknown.

Proof. Similar with the proof of Theorem 3.2.

&
Remark 3.2 0y is also admissible for @ under the weighted sum of squared error losses

L(8,7,d)=7r|0—d|® since the weighting factor 7 does not affect the admissibility or
inadmissibility of an estimator.
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