• Title/Summary/Keyword: Adipocytes

Search Result 702, Processing Time 0.022 seconds

Inhibitory Effect of the Ethanol Extract of Torilis Japonica Decandolle on Adipocyte Differentiation in 3T3-L1 Cells (사상자 에탄올 추출물의 지방세포 분화 억제 효과)

  • Nam, Gun He;Wee, Ji-Hyang;Kim, Sang Yung;Baek, Ji-Young;Kim, Young Min
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1016-1022
    • /
    • 2019
  • Owing to increased interest in preventing obesity in an aging society, both men and women spend considerable amount of cost on obesity managements. In this study, we investigated the natural substances on anti-obesity activities in 3T3-L1 pre-adipocytes. Also, to improve anti-obesityeffects, research using 3T3-L1 pre-adipocytes cells is crucial. The anti-obesity effect of 70% ethanol extract from Torilis Japonica Decandolle on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by suppressing adipocyte differentiation and lipid accumulation with Oil Red O assay, and western blot analysis. Compared to the control, 70% ethanol extract of Torilis Japonica Decandolle was significantly inhibited adipocyte differentiation and intracellular triglyceride (TG) level at a concentration of $100{\mu}g/ml$. To determine the mechanism of reduction in TG content, we determined the level of protein expression of obesity-related proteins, such as peroxisome-proliferatorsactivated-receptor-${\gamma}$ ($PPAR{\gamma}$) and CCAAT enhancer-binding-proteins-${\alpha}$ ($C/EBP{\alpha}$), and Acetyl-CoA carboxylase (ACC) phosphorylation. As a results, 70% ethanol extract of Torilis Japonica Decandolle significantly decreased protein expression of $PPAR{\gamma}$, $C/EBP{\alpha}$ and ACC phosphorylation. These results indicate that 70% ethanol extract of Torilis Japonica Decandolle is the most effective candidate for preventing obesity. However further studies will be needed to identify the active compounds that confer the anti-obesity activity of Torilis Japonica Decandolle.

2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes (2,7-Phloroglucinol-6,6-Bieckol의 3T3-L1 지방세포에서 GLUT4 활성화를 통한 포도당 흡수 증진 효과)

  • Lee, Hyun-Ah;Han, Ji⁃Sook
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.729-735
    • /
    • 2021
  • Type 2 diabetes occurs when there is an abnormality in the tissue's ability to absorb glucose. Glucose uptake and metabolism by insulin are the basic mechanisms that maintain blood sugar. Glucose uptake goes through various signaling steps initiated by the binding of insulin to receptors on the cell surface. In line with the foregoing, the purpose of this study was to investigate the effect of 2,7-phloroglucinol-6,6-bieckol (PHB), an active compound isolated from Ecklonia cava, on glucose uptake in 3T3-L1 adipocytes. Notably, PHB increased glucose uptake in a dose-dependent manner owing to the enhanced glucose transporter type 4 (GLUT4) expression in the plasma membrane of 3T3-L1 adipocytes. These effects of PHB were attributed to the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB or AKT), as well as to the phosphoinositide 3-kinase (PI3K) activation in the insulin signaling pathway. PHB also stimulated 5' AMP-activated protein kinase (AMPK) phosphorylation and activation. The phosphorylation and activation of the PI3K/AKT and AMPK pathways by PHB were identified using wortmannin (a PI3K inhibitor) and compound C (an AMPK inhibitor). In this study, we showed that PHB can increase glucose uptake in 3T3-L1 adipocytes by promoting GLUT4 translocation to the plasma membrane via the PI3K and AMPK pathways. The results indicate that PHB may help improve insulin sensitivity.

Screening of key miRNAs related with the differentiation of subcutaneous adipocytes and the validation of miR-133a-3p functional significance in goats

  • Xin, Li;Hao, Zhang;Yong, Wang;Yanyan, Li;Youli, Wang;Jiangjiang, Zhu;Yaqiu, Lin
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.144-155
    • /
    • 2023
  • Objective: Adipocyte differentiation is regulated by a variety of functional genes and noncoding RNAs. However, the role of miRNAs in lipid deposition of goat white adipose tissue is still unclear. Therefore, this study revealed the miRNA expression profile in goat subcutaneous adipocytes by sRNA-seq. Methods: The miRNA expressed in goat subcutaneous preadipocytes and the mature adipocytes were sequenced by sRNA-seq. The differentially expressed miRNAs (DEm) were screened and gene ontology (GO) and Kyoto encyclopedia for genes and genomes (KEGG) analyses were performed. Gain-of-function and loss-of-function combined with oil red O staining, Bodipy staining, and quantitative reverse-transcription polymerase chain reaction (qPCR) were utilized to determine the effect of miR-133a-3p on adipocyte differentiation. Results: A total of 218 DEm were screened out. The target genes of these DEm were significantly enriched in GO items such as biological regulation and in KEGG terms such as FAK signaling pathway and MAPK signaling pathway. qPCR verified that the expression trend of miRNA was consistent with miRNA-seq. The gain-of-function or loss-of-function of miR-133a-3p showed that it promoted or inhibited the accumulation of lipid droplets, and CCAAT enhancer binding protein α (C/EBPα) and C/EBPβ were extremely significantly up-regulated or down-regulated respectively (p<0.01), the loss-of-function also led to a significant down-regulation of peroxisome proliferator activated receptor gamma (PPARγ) (p<0.01). Conclusion: This study successfully identified miRNAs expression patterns in goat subcutaneous adipocytes, and functional identification indicates that miR-133a-3p is a positive regulator of the differentiation process of goat subcutaneous adipocytes. Our results lay the foundation for the molecular mechanism of lipid deposition in meat-source goats from the perspective of miRNA.

MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation

  • Wang, Laidi;Hu, Xiaodan;Wang, Shasha;Yuan, Chunyou;Wang, Zhixiu;Chang, Guobin;Chen, Guohong
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1327-1339
    • /
    • 2022
  • Objective: Fat deposition in poultry is an important factor in production performance and meat quality research. miRNAs also play important roles in regulating adipocyte differentiation process. This study was to investigate the expression patterns of miRNAs in duck adipocytes after differentiation and explore the role of miR-214 in regulating carnitine palmitoyltransferases 2 (CPT2) gene expression during duck adipocyte differentiation. Methods: Successful systems for the isolation, culture, and induction of duck primary fat cells was developed in the experiment. Using Illumina next-generation sequencing, the miRNAs libraries of duck adipocytes were established. miRanda was used to predict differentially expressed (DE) miRNAs and their target genes. The expression patterns of miR-214 and CPT2 during the differentiation were verified by quantitative real-time polymerase chain reaction and western blot. Luciferase reporter assays were used to explore the specific regions of CPT2 targeted by miR-214. We used a miR-214 over-expression strategy in vitro to further investigate its effect on differentiation process and CPT2 gene transcription. Results: There were 481 miRNAs identified in duck adipocytes, included 57 DE miRNA candidates. And the 1,046 targets genes of DE miRNAs were mainly involved in p53 signaling, FoxO signaling, and fatty acid metabolism pathways. miR-214 and CPT2 showed contrasting expression patterns before and after differentiation, and they were selected for further research. The expression of miR-214 was decreased during the first 3 days of duck adipocytes differentiation, and then increased, while the expression of CPT2 increased both in the transcriptional and protein level. The luciferase assay suggested that miR-214 targets the 3'untranslated region of CPT2. Overexpression of miR-214 not only promoted the formation of lipid droplets but also decreased the protein abundance of CPT2. Conclusion: Current study reports the expression profile of miRNAs in duck adipocytes differentiated for 4 days. And miR-214 has been proved to have the regulator potential for fat deposition in duck.

Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과)

  • Hyun Ah Lee;Ji Sook Han
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.859-867
    • /
    • 2023
  • Lupeol is a type of pentacyclic triterpene that has been reported to have therapeutic effects for treating many diseases; however, its effect on insulin resistance is unclear clear. This study examined the inhibitory effect of lupeol on the serine phosphorylation of insulin receptor substrate-1 in insulin resistance-induced 3T3-L1 adipocytes. 3T3-L1 cells were cultured and treated with tumor necrosis factor-α (TNF-α) for 24 hours to induce insulin resistance. Cells treated with different concentrations of lupeol (15 μM or 30 μM) or 100 nM of rosiglitazone were incubated. Then, lysed cells underwent western blotting. Lupeol exhibited a positive effect on the negative regulator of insulin signaling and inflammation-activated protein kinase caused by TNF-α in adipocytes. Lupeol inhibited the activation of protein tyrosine phosphatase-1B (PTP-1B)-a negative regulator of insulin signaling-and c-Jun N-terminal kinase (JNK); it was also an inhibitor of nuclear factor kappa-B kinase (IKK) and inflammation-activated protein kinases. In addition, Lupeol downregulated serine phosphorylation and upregulated tyrosine phosphorylation in insulin receptor substrate-1. Then, the downregulated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway was activated, the translocation of glucose transporter type 4 was stimulated to the cell membrane, and intracellular glucose uptake increased in the insulin resistance-induced 3T3-L1 adipocytes. Lupeol may improve TNF-α-induced insulin resistance by downregulating the serine phosphorylation of insulin receptor substrate 1 by inhibiting negative regulators of insulin signaling and inflammation-activated protein kinases in 3T3-L1 adipocytes.

Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice

  • Deok Hoon Kwon;Jungwon Hwang;Hyeyoung You;Na Young Kim;Ga Young Lee;Sung Nim Han
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.

Anti-obesity Effect of Ethanol Extracts from Silkworm (Bombyx mori) Pupae Powder Fermented with Cordyceps militaris in the Primary Adipocytes and High Fat Diet-induced Obesity Model Mice (일차 지방세포와 고지방식이로 유발한 비만모델동물에서 Cordyceps militaris로 발효시킨 누에 (Bombyx mori) 가루 에탄올 추출물의 항비만 효과)

  • Kim, Ji Eun;Lee, Mi Rim;Choi, Jun Young;Park, Jin Ju;Kim, Hye Ryeong;Song, Bo Ram;Choi, Young Whan;Kim, Kyung Mi;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.786-794
    • /
    • 2018
  • Silkworm (Bombyx mori) pupae have been widely worked in wound dressing, hepatoprotective activity, antigenotoxicity, control of glucose level and anti-cancer activity. To investigate the anti-obesity activity of ethanol extract of silkworm pupae powder fermented with Cordyceps militaris (ESfC), the free glycerol release and cAMP concentration as well as fat accumulation were measured in the primary adipocytes of SD (Sprague Dawley) rats and high fat diet (HFD)-treated C57BL/6 mice treated with 12 weeks. Firstly, the presence of the cordycepin with lipid lowering effect was confirmed in ESfC using HPLC analysis. The level of free glycerol and cAMP concentration was significantly increased in the primary adipocytes treated with high dose of ESfC ($400{\mu}g/ml$) although these levels were consistently maintained in other dose ESfC treated groups. In HFD-induced obesity model, the increased fat weight and size of adipocytes in HFD+Vehicle treated group was recovered in HFD+ESfC treated group. Also, the liver weight and the number of lipid droplets were higher in HFD+Vehicle treated group than No treated group. But, this level was significantly decreased in HFD+ESfC treated group compared with HFD+Vehicle treated group. Furthermore, a similar recovery was detected on the phosphorylation of periliphin and HSL, and ATGL expression. Overall, the results of the present study provide some scientific evidences that ESfC can stimulate lipolysis in primary adipocytes and prevent fat accumulation in HFD-treated obesity model, and therefore have the potential for use as anti-obesity agents to treat obese patient.

Antiadipogenic Effect of Korean Glasswort (Salicornia herbacea L.) Water Extract on 3T3-L1 Adipocytes (세포배양 모델을 통한 함초(Salicornia herbacea L.) 물 추출물의 항비만 효과 탐색)

  • Kim, Mi Joung;Jun, Hyun Young;Kim, Jung Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.814-821
    • /
    • 2014
  • As a natural plant ingredients, glasswort (Salicornia herbacea L.) contains various physiological activities, mainly anti-oxidative and anti-diabetic activities. However, only a few studies have been carried out on its anti-adipogenic effect. This study investigated the anti-obesity effects of Salicornia herbacea L. on 3T3-L1 adipocytes. As adipogenesis of preadipocytes to adipocytes involves proliferation and differentiation of cells, we treated three concentrations (125, 250, and $500{\mu}g/mL$) of Salicornia herbacea L. water extracts (SLW) in both pre-processing and post-processing stages. When 3T3-L1 adipocytes were differentiated and dyed with Oil Red O, adipocytes size and the value of relative Oil Red O staining were reduced by all concentrations of SLW in post-processing stage. Following adipogenic differentiation, the concentration of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in the cell supernatant significantly increased upon treatment with $125{\mu}g/mL$ of SLW and further rose at concentrations of 250 and $500{\mu}g/mL$ during post-processing stage. There was no significant difference in glycerol production upon SLW treatment. Leptin production significantly decreased at all SLW concentrations during post-processing stage, whereas peroxisome proliferator activated receptor-${\gamma}$ (PPAR-${\gamma}$) and adiponectin secretions were significantly enhanced. Overall results showed that SLW might have an anti-adipogenic effect via enhancement of TNF-${\alpha}$ production, which causes dedifferentiation and inhibits lipid accumulations in adipocyte. Furthermore, SLW might prevent diabetes and cardiovascular disease, as it reduces leptin secretion and enhances production of both PPAR-${\gamma}$ and adiponectin. However, further research is needed to elucidate the exact mechanism and bioactive compounds of glasswort.

Development of Polyclonal Antibodies to Abdominal and Subcutaneous Adipocytes for Fat-Reduced Hanwoo Beef Production (한우 체지방 감소 쇠고기 생산을 위한 복강 및 피하지방 항체 개발)

  • Choi, Chang-Weon;Kim, Yu-Hyun;Kim, Sang-Jin;Song, Man-Kang;Kwon, Eung-Gi;Oh, Young-Kyoon;Hong, Seong-Koo;Choi, Seong-Ho;Baek, Kyung-Hoon
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.651-659
    • /
    • 2008
  • This study aimed to develop polyclonal antibodies to regional inedible adipocytes of Korean native cattle (Hanwoo) and investigate cross-reactivity of the antibodies. Patterns in plasma membrane proteins (PMPs) from abdominal and subcutaneous adipocytes of Hanwoo isolated by collagenase digestion were investigated using SDS-PAGE. As antigens, abdominal and subcutaneous adipocyte PMPs of Hanwoo were injected to sheep 3 times at 3 wk intervals for passive immunization, and non-immunized serum and antisera were collected before and after the injections. Titers of the antisera obtained from sheep and their cross-reactivities with heart, kidney, liver, lung, muscle, and spleen of Hanwoo were determined by ELISA. Isolation and culture of abdominal and subcutaneous adipocytes of Hanwoo were performed for analysing LDH concentration. Based on the SDS-PAGE analysis, specific proteins of PMPs in abdominal and subcutaneous adipocytes appeared despite rather similar patterns between both adipocytes. At the level of 1:1,000 dilution, little antibody reactivity appeared in non-immunized serum whereas the antisera had relatively strong reactivity up to the level of 1:128,000 and 1:64,000 dilution. These findings may indicate that strong antibodies against adipocyte PMPs can be developed using an immunological approach. Extremely low reactivities of abdominal and subcutaneous adipocyte antisera were detected with PMPs of the organs. Both antisera strongly reacted with each adipocyte PMPs and showed statistically (p<0.01) higher cross-reactivities compared with non-immunized serum. In conclusion, these results may indicate that the present polyclonal antibodies against regional inedible adipocyte PMPs are well developed and have safety in cross-reactivities with body organs. Further studies on in vivo cross-reactivity and fat reduction of the antibodies against abdominal and subcutaneous adipocytes PMPs of Hanwoo should be required for inedible fat-reduced high quality beef production.

Changes in $A_{1}$, Adenosine Receptor-Adenylyl Cyclase System of Rat Adipocytes Fellowing Induction of Experimental Diabetes by Streptozotocin Treatment (Streptozotocin으로 당뇨병을 유발시킨 쥐의 지방세포에 나타나는 $A_{1}$, Adenosine Receptor-Adenylyl Cyclase System의 변화)

  • Park, Kyung-Sun;Lee, Myung-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.97-105
    • /
    • 1993
  • Adenosine receptors in rat adipose tissues have been reported to be of $A_{1}$ subclass, and their stimulation leads to inhibition of adenylyl cyclase, resulting in inhibition of lipolysis. In the present study we investigated changes in $A_{1}$ adenosine receptor-adenylyl cyclase system of adipocytes following induction of experimental diabetes in rats. One week following experimental diabetes were induced by intravenous injection of streptozotocin (50 mg/kg body wt.), adipocytes from rats $(170{\sim}230g)$ fed ad libitum were isolated using collagenase. When adipocytes were incubated for 1 h with 1 unit/ml adenosine deaminase and $1\;{\mu}M$ isoproterenol, and assayed for glycerol formation, it was found that the inhibition of lipolysis in diabetic adipocytes by $(-)-N^{6}-(R-phenylisopropyl)adenosine$ (PIA), an $A_{1}$, adenosine receptor agonist, was twice that of control adipocytes. In an effort to delineate the mechanism(s), $[^{3}H]PIA$ binding to adipocytic membranes from diabetic and control rats were determined. Neither the affinities nor numbers of $A_{1}$ adenosine receptor were significantly different from each other (Best fit parameters for the one-site model are: $K_{d}=0.51{\pm}0.09nM$ and $B_{max}=1.60{\pm}0.12\;pmoles/mg$ protein for control membranes; $K_{d}=0.54{\pm}0.21\;nM$ and $B_{max}=1.72{\pm}0.31\;pmoles/mg$ protein for diabetic membranes). However, the inhibiton by PIA of the isoproterenol-stimulated adenylyl cyclase activities was found to be 1.9 times higher in adipocytic membranes from diabetic rats than those from controls. These results suggest that the increased sensitivity of inhibition of lipolysis to PIA in adipocytic membranes from diabetic rats is due to changes in signal transduction pathways, rather than alterations of $A_{1}4 adenosine receptor molecules themselves.

  • PDF