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ABSTRACT

BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in 
the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory 
responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of 
vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 
1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs 
and adipocytes from atherosclerotic mice.
MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 
10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + 
cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr−/−) mice were fed a HFC 
diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from 
VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for 
the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune 
cell population in SVCs, and the expression of the genes involved in the inflammatory 
signaling pathway in SVCs were determined.
RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and 
OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced 
macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of 
interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group 
was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced 
the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-
activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by 
adipocytes from all 3 groups.
CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of 
the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory 
cytokine production.
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INTRODUCTION

Atherosclerosis is no longer considered simply as a degenerative lipid storage disease. 
Instead, it is an inflammation-driven disease with a diverse risk factor profile [1]. Metabolic 
syndrome, represented by obesity and insulin resistance, is a major driver of increased 
cardiovascular disease risk worldwide, and hypertrophic adipose tissue, which contains large 
numbers of inflammatory cells and produces proinflammatory mediators, contributes to the 
increased atherosclerotic risk [2].

Adipose tissue is composed of adipocytes and non-adipocytes, known as stromal vascular 
cells (SVCs) [3]. Previous studies reported that the production of proinflammatory cytokines 
involved in systemic, low-grade chronic inflammation in obesity is driven largely by adipose 
tissue-resident macrophages (ATMs) [4-7]. Adipose tissue inflammation leads to the 
infiltration of large numbers of macrophages and secretion of T helper 1 type cytokines such 
as interferon-γ, which promotes the M1 phenotype of macrophages. The expression of tumor 
necrosis factor α (TNF-α) and inducible nitric oxide synthase by M1 macrophages leads to the 
production of large amounts of reactive oxygen and nitrogen intermediates, causing vascular 
inflammation and tissue destruction. In this state, anti-inflammatory M2 macrophages, 
which are responsible for angiogenesis and wound healing, are suppressed [8]. In particular, 
visceral adipose tissue (VAT) contains more inflammatory immune cells than subcutaneous 
adipose tissue, and adipocytes in VAT release more free fatty acids and exhibit higher insulin 
resistance [9]. Furthermore, abdominal body fat distribution measured with the waist/hip 
circumference ratio is associated with a prevalence of coronary artery disease independent 
of obesity [10]. Several mechanisms have been proposed to explain how an increased 
inflammatory response in VAT adversely affects cardiovascular health and atherosclerosis [11-
15]. VAT-derived inflammatory products move to the liver through the portal vein and affect 
the lipoprotein and clotting factor levels or work directly at the vessel wall to regulate gene 
expression and function of smooth muscle cells and macrophages.

Toll-like receptors (TLRs) are involved in activating the innate immune response through 
the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the mitogen-
activated protein kinase (MAPK) inflammatory signaling pathway by recognizing the 
pathogen-associated molecular patterns (PAMPs) produced by microbes and damage-
associated molecular patterns (DAMPs) derived from dead cells or tissue damage [16]. TLR2 
and TLR4 are expressed on the immune cells in atherosclerotic plaque and are involved in the 
development of coronary artery disease [17]. The TLR2 and TLR4 expression levels are higher 
in the peripheral blood mononuclear cells (PBMCs) and monocytes isolated from obese 
patients than in non-obese patients. They are activated by free fatty acids and dietary lipids 
[18,19]. TLR4 recognizes oxidized low-density lipoprotein (ox-LDL) and contributes to the 
production of inflammatory cytokines and macrophage differentiation into foam cells [20].

Vitamin D has been reported to have anti-inflammatory effects in chronic diseases, such as 
cancer, obesity, and cardiovascular diseases [21]. The expression of the vitamin D receptor 
(VDR) and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) gene in human and murine 
adipose tissue suggests that vitamin D is involved in the adipose tissue biology [22]. Previous 
studies reported that a 100 nM in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment 
downregulates the protein and mRNA expression of TLR2 and TLR4 in human monocytes 
[23,24]. In addition, a 10 nM in vitro 1,25(OH)2D3 treatment on mouse SVCs or human PBMCs 
reduced the production of proinflammatory cytokines, such as interleukin-6 (IL-6), monocyte 
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chemoattractant protein 1 (MCP-1), and TNF-α, and increased the mRNA levels of dual-
specificity protein phosphatase 1 (DUSP1; also known as mitogen-activated protein kinase 
phosphatase 1, MKP-1) [25,26]. Furthermore, 10 and 100 nM in vitro 1,25(OH)2D3 treatments 
on human preadipocytes/adipocytes decreased the mRNA levels and production of IL-6, IL-1β, 
and MCP-1 [27-31]. On the other hand, Sun and Zemel [32,33] reported that a 10 nM in vitro 
1,25(OH)2D3 treatment increased Mcp1 and Il6 expression in 3T3-L1 cells and human adipocytes.

In atherosclerosis, vitamin D increases endothelial nitric oxide production and inhibits 
vascular smooth muscle cell proliferation. A vitamin D deficiency may increase the 
cardiovascular risk by increasing the expression of vascular adhesion molecules and 
monocytes/macrophages [34]. Furthermore, 1,25(OH)2D3 inhibited the formation of foam 
cells during macrophage differentiation by suppressing endoplasmic reticulum stress 
and leading them into the non-adhesive, anti-atherogenic type in type 2 diabetic patients 
[35,36]. On the other hand, the effects of 1,25(OH)2D3 on regulating VAT inflammation in 
atherosclerosis are unclear. Moreover, there is a paucity of research on the effects of vitamin 
D on atherogenic models other than high-fat diet-induced obese mice. Therefore, this study 
examined the effects of an in vitro 1,25(OH)2D3 treatment on inflammatory responses in 
VAT from B6.129S7-Ldlrtm1Her/J (Ldlr−/−) mice with high fat + cholesterol (HFC) diet-induced 
atherosclerosis by determining the changes in proinflammatory cytokine production, 
inflammation-related gene expression, and immune cell population.

MATERIALS AND METHODS

Animals and diets
Six-week-old male C57BL/6J (B6) and B6.129S7-Ldlrtm1Her/J (Ldlr−/−) mice obtained from Jackson 
Laboratory (Bar Harbor, ME, USA) were housed in a specific pathogen-free room at Seoul 
National University with an environmentally controlled temperature (23 ± 1°C), humidity 
(50 ± 10%), and a 12-h light/dark cycle. After 5 days of acclimation, the B6 mice were divided 
randomly into the control (CON, n = 24) and obese (OB, n = 22) groups. The CON group 
was fed a 10% kcal fat control diet (D12450B; Research Diets, New Brunswick, NJ, USA), 
and the OB group was fed a 41% kcal fat, 0.21% cholesterol HFC diet (D12079B, Western 
diet; Research Diets). The Ldlr−/− mice were fed the same diet as the OB group (obese with 
atherosclerosis, OBA, n = 22). The body weight and food intake were measured weekly and 3 
times a week, respectively. Food and water were provided ad libitum for 16 weeks.

At the end of the feeding period, the mice were fasted for 12 h and euthanized by CO2 gas 
asphyxiation. The blood was collected immediately by cardiac puncture and kept for 2 h at 
room temperature (RT). The sample was centrifuged at 500 × g for 20 min at 4°C to obtain 
serum. The thoracic aortas were excised and fixed with 4% paraformaldehyde for oil-red 
O staining. The perirenal, retroperitoneal, and epididymal fat was weighed and collected 
in a dish filled with sterile phosphate-buffered saline (PBS) plus 250 ng/mL amphotericin 
B (Gibco, Grand Island, NY, USA) and 1% bovine serum albumin (BSA). The Institutional 
Animal Care and Use Committee of Seoul National University approved all experiments 
(approval No. SNU-210715-3-2).

Serum lipid level analyses
The serum triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol 
(HDL-C) levels were determined using AM157S-K, AM202-K, and AM203-K assay kits (Asan 
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Pharm., Seoul, Korea), respectively. The absorbance was measured using the SpectraMax iD3 
spectrophotometer (Molecular Devices, San Jose, CA, USA) at 505 nm/570 nm for TC and 
HDL-C, and 550 nm for TG.

Oil red O staining
After removing the paraformaldehyde, the fixed murine aortas of each group were soaked in 
99.0% propylene glycol (Samchun Pure Chemical, Pyeongtaek, Korea) for 2 min. The washed 
aortas were stained with an oil-red O solution (Sigma-Aldrich, St. Louis, MO, USA). The 
pathological lesions on the aortas were observed under a microscope (Sunny Optical Tech, 
Busan, Korea).

Isolation of adipocytes and stromal vascular cells
The collected visceral fat pads were pooled before further experiments (CON: 3, OB: 2, 
OBA: 2 pooled). The fat tissues were cut into small pieces with scissors and incubated in a 
shaking water bath for 40 min (37°C, 170 cycle/min) with Dulbecco’s Modified Eagle Medium 
(DMEM; Gibco) supplemented with 0.1% collagenase type 2 (Sigma-Aldrich) and 2% BSA. 
The digested suspension was passed through a 200 μm pore nylon mesh to remove the 
tissue debris. The filtrate was centrifuged at 500 × g for 5 min at RT, and the top layer was 
transferred to a new tube as adipocytes. The cell pellet (SVCs) at the bottom was incubated 
with 3 ml of ammonium-chloride-potassium lysis buffer (Gibco) for 3 min at RT to remove 
the red blood cells. The isolated adipocytes and SVCs were washed twice with DMEM/10% 
fetal bovine serum (FBS) and used for flow cytometry or cell culture.

In vitro 1,25(OH)2D3 treatment
The adipocytes were cultured in a 6-well plate (4 × 106 cells/well), and SVCs were cultured in a 
12-well plate (5 × 105 cells/well) with DMEM/10% FBS for 48 h in the presence or absence of 10 
nM 1,25(OH)2D3 (Sigma-Aldrich). During the final 24 h, the cells were cultured with or without 
100 ng/mL lipopolysaccharides (LPS; Sigma-Aldrich). The cells were incubated at 37°C in 5% 
CO2 and a 100% humidified atmosphere. The cell culture supernatant was collected and stored 
at −80°C for cytokine analysis using an enzyme-linked immunosorbent assay (ELISA). The 
SVCs were collected and used for flow cytometry or stored at −80°C for RNA isolation.

Flow cytometry analysis
The immune cell subpopulation was analyzed by resuspending freshly isolated SVCs from 
VAT or 48 h cultured SVCs in a FACS-staining buffer (PBS with 0.09% sodium azide [Sigma-
Aldrich] and 1% FBS), followed by staining with the following antibodies for 30 min at 4°C: 
PE-Cy™7 rat anti-mouse cluster of differentiation 45 (CD45), BV786 mouse anti-mouse 
CD64, APC-R700 rat anti-mouse CD11b, PE hamster anti-mouse CD11c, FITC rat anti-mouse 
CD3, APC rat anti-mouse CD4, PerCP-Cy™5.5 rat anti-mouse CD8a, and BV605 mouse anti-
mouse NK-1.1. After staining, cells were fixed with PBS containing 4% formaldehyde and 
analyzed using the BD FACSAria™ III and FlowJo™ software version 10. All materials for flow 
cytometry were obtained from BD Biosciences (Franklin Lakes, NJ, USA). Table 1 lists the cell 
surface markers used for the flow cytometry.

Cytokine measurement
The concentrations of MCP-1 and IL-6 in the culture media produced by adipocytes and 
SVCs were determined using Mouse ELISA MCP-1 and IL-6 kits (#555260 and #555240, 
respectively; BD Biosciences) according to the manufacturers’ instructions. The absorbance 
was measured at 450 nm using a SpectraMax iD3 (Molecular Devices).
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Real-time quantitative reverse transcription polymerase chain reaction  
(qRT-PCR)
The total RNA was extracted from SVCs using the RNAiso Plus (Takara Bio, Shiga, Japan), 
according to the manufacturer’s instructions. The first-strand cDNA was synthesized 
using the PrimeScript™ RT Master Mix (Takara Bio). qRT-PCR was then performed using 
StepOnePlus™ Real-time PCR system (Applied Biosystems, Foster City, CA, USA) with 
TB Green™ Premix Ex Taq (Takara Bio). The relative expression levels of the genes were 
determined using the 2−ΔΔCT method and normalized to the expression of the endogenous 
control gene glyceraldehyde-3-phosphate dehydrogenase (Gapdh). Table 2 lists the primer 
sequences used in qRT-PCR.

Statistical analysis
Statistical analyses were performed using SPSS statistical version 26 software (IBM Corp., 
Armonk, NY, USA). The differences among the 3 groups were determined by one-way analysis 
of variance (ANOVA) or Kruskal-Wallis test, followed by a Dunnett’s post hoc test. A paired 
t-test or Wilcoxon signed-rank test was used to evaluate the effects of in vitro 1,25(OH)2D3 
treatment. All data are presented as the means ± standard error of the means (SEMs), and 
P-values less than 0.05 were considered significant.

RESULTS

Body weight, weight gain, VAT weight, and food intake
The body weights at week 0 were similar in the 3 groups (Table 3). After 16 weeks of feeding, 
the OB and OBA groups had significantly higher body weight and weight gain than the CON 
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Table 1. Cell surface markers used for flow cytometry analyses
Cell Surface markers
Macrophages PECy7-CD45

BV786-CD64
APCR700-CD11b

M1 macrophages PECy7-CD45
BV786-CD64

APCR700-CD11b
PE-CD11c

CD4+ T cells PECy7-CD45
FITC-CD3
APC-CD4

CD8+ T cells PECy7-CD45
FITC-CD3

PerCPCy5.5-CD8a
M1, M1 macrophage; CD, cluster of differentiation.

Table 2. Sequences of the primers used in qRT-PCR
Genes Forward primers Reverse primers
Tlr2 CTTCATCTACGGGCAGTGGT TTTGCTGGGCTGACTTCTCT
Tlr4 TTTCACCTCTGCCTTCACTACA GGGACTTCTCAACCTTCTCAA
Dusp1 TGTGGGAGCATTTAGAGAGACTG CCAAAACGACAGCCAAAAGT
Dusp10 CCAAGGAGTTGTTTCCGTTAGC AGTGGAGCAGGTGAAGAGTGA
Iκbα CAGCATCTCCACTCCGTCCT ACATCAGCCCCACATTTCA
Gapdh CATCACTGCCACCCAGAAGACTG ATGCCAGTGAGCTTCCCGTTCAG
qRT-PCR, quantitative reverse transcription polymerase chain reaction; Tlr2, Toll-like receptor 2; Tlr4, Toll-like 
receptor 4; Dusp1, dual specificity protein phosphatase 1 (also known as mitogen-activated protein kinase 
phosphatase 1, MKP-1); Dusp10, dual specificity protein phosphatase 10; Iκbα, nuclear factor of kappa light 
polypeptide gene enhanced in B-cells inhibitor alpha; Gapdh, glyceraldehyde-3-phosphate dehydrogenase.
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group, but there was no difference between the OB and OBA groups. The VAT weight was 
significantly different among the 3 groups. The OBA group had a higher VAT weight than the 
CON group but lower than the OB group. The CON group had a significantly higher average 
food intake (g/day) but a lower average energy intake (kcal/day) than the other 2 groups. The 
food and energy intakes were similar in the OB and OBA groups.

Serum lipid levels and the atherosclerotic lesions in the aorta
The OBA group exhibited significantly higher serum TG and TC levels but lower HDL-C levels 
than the OB and CON groups (Table 4). The OB group had higher serum TC and HDL-C 
levels than the CON group, but the TG levels were similar.

Atherosclerotic lesions on the aortic arch only developed in the OBA group (Fig. 1).

CD45+ immune cell population in SVCs
Fig. 2 shows the total cell numbers of SVCs, ATMs, CD4+ T cells, and CD8+ T cells freshly 
isolated from VAT. The cell numbers were calibrated by dividing by the pooled number of 
mice in each group (CON: 3, OB: 2, OBA: 2) because the fat pads were pooled before cell 
counting. The total numbers of SVCs, ATMs, and CD4+ T cells were higher in the OBA group 
than in the CON group. In the OB group, however, only the number of ATMs was higher than 
in the CON group. The total number of CD8+ T cells was similar in the 3 groups.

The percentages of ATMs/SVCs and M1 macrophages (M1)/ATMs were similar in the 3 groups 
(Fig. 2). The effects of the in vitro 1,25(OH)2D3 treatment on macrophages and M1 population 
in LPS-stimulated SVCs were determined (Fig. 3). Only the OBA group showed a decrease 
in percentage of macrophages/SVCs after the 1,25(OH)2D3 treatment (7.7% less). The in vitro 
1,25(OH)2D3 treatment did not affect the percentage of M1 in the macrophages in all 3 groups.
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Table 3. Body weight, weight gain, VAT weight, and food intake
Variables CON (n = 24) OB (n = 22) OBA (n = 21) P-value
Body weight at week 0 (g) 19.3 ± 0.5 19.4 ± 0.4 19.0 ± 0.6 0.897
Body weight at week 16 (g) 27.5 ± 0.5a 34.7 ± 0.6b 32.4 ± 0.9b < 0.001
Weight gain (g) 8.2 ± 0.5a 15.4 ± 0.6b 13.5 ± 1.0b < 0.001
VAT weight (g)* 0.82 ± 0.06a 2.35 ± 0.12 c 1.83 ± 0.17b < 0.001
Average food intake (g/day) 2.46 ± 0.04b 2.32 ± 0.02a 2.28 ± 0.02a < 0.001
Average energy intake (kcal/day) 9.45 ± 0.17a 10.88 ± 0.10b 10.70 ± 0.09b < 0.001
Data are presented as the means ± SEMs. One-way ANOVA (body weight at week 16 and VAT weight) or Kruskal-
Wallis test (body weight at week 0, weight gain, average food intake, and average energy intake) was performed 
to determine the significant difference among the 3 groups.
VAT, visceral adipose tissue; CON, C57BL/6J, control diet; OB, C57BL/6J, high fat + cholesterol diet; OBA, Ldlr −/− 
mice, high fat + cholesterol diet; SEMs, standard error of the means; ANOVA, analysis of variance.
a,bDifferent superscripts indicate significant differences (P < 0.05) by Dunnett’s test or Bonferroni correction.
*VAT weight includes perirenal, retroperitoneal, and epididymal fat.

Table 4. Serum TC, TG, and HDL-C levels
Variables CON (n = 8) OB (n = 8) OBA (n = 8) P-value
TG (mg/dL) 100.1 ± 14.7a 76.8 ± 5.2a 359.0 ± 57.7b < 0.001
TC (mg/dL) 108.4 ± 6.1a 185.5 ± 6.2b 1,717.3 ± 166.6c < 0.001
HDL-C (mg/dL) 67.1 ± 3.5b 107.4 ± 2.7c 54.4 ± 3.1a < 0.001
Data are presented as the means ± SEMs. One-way ANOVA (TC and HDL-C) or Kruskal-Wallis test (TG) was 
performed to determine the significant difference among the 3 groups.
TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; CON, C57BL/6J, control diet; 
OB, C57BL/6J, high fat + cholesterol diet; OBA, Ldlr−/− mice, high fat + cholesterol diet; SEMs, standard error of 
the means; ANOVA, analysis of variance.
a,b,cDifferent superscripts indicate significant differences (P < 0.05) by Dunnett’s test or Bonferroni correction.
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CON OB OBA

Fig. 1. Oil-red O-stained atherosclerotic lesions in the aorta. Atherosclerotic lesions (directed by white arrows) 
were developed only in the OBA group. The aortas were prepared from mice with the en face method, and 
atherosclerotic lesions were stained with an oil-red O solution. The mice were sacrificed after 16 weeks of feeding. 
A representative aorta image of each group is shown. 
CON, C57BL/6J, control diet; OB, C57BL/6J, high fat + cholesterol diet; OBA, Ldlr −/− mice, high fat + cholesterol diet.
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Fig. 2. Total cell numbers per mouse of (A) SVCs, (B) macrophages, (C) CD4+ T cells and (D) CD8+ T cells and percentages of (E) macrophages/SVCs, (F) M1/
macrophages in SVCs from CON, OB, and OBA groups. The SVCs were freshly isolated from the murine visceral adipose tissue and analyzed by flow cytometry. 
The total cell numbers were calibrated by dividing by the pooled number of mice in each group (CON: 3, OB: 2, OBA: 2). The data are presented as the means ± 
SEMs, n = 9–12 for each group. One-way ANOVA (A, B, E, and F) or Kruskal-Wallis test (C and D) was performed to determine the difference among the 3 groups. 
SVCs, stromal vascular cells; M1, M1 macrophages; CON, C57BL/6J, control diet; OB, C57BL/6J, high fat + cholesterol diet; OBA, Ldlr−/− mice, high fat + 
cholesterol diet; SEMs, standard error of the means; ANOVA, analysis of variance. 
a,bThe different superscripts indicate significant differences (P < 0.05) by a Dunnett’s test or Bonferroni correction.
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Proinflammatory cytokine production by SVCs and adipocytes
The levels of IL-6 and MCP-1 produced by SVCs and adipocytes were measured to determine 
if the in vitro 1,25(OH)2D3 treatment affected the production of proinflammatory cytokines 
in VAT (Fig. 4). In SVCs with or without LPS stimulation, there was no difference in the IL-6 
and MCP-1 production levels among 3 groups. The in vitro 1,25(OH)2D3 treatment decreased 
the IL-6 and MCP-1 production significantly in the LPS-stimulated SVCs (7.8% and 8.8% 
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Fig. 3. Percentages of (A) macrophages/SVCs, (B) M1/macrophages in SVCs from CON, OB, and OBA groups. The SVCs were analyzed by flow cytometry after 
incubation with 1,25(OH)2D3 (10 nM) or vehicle (0.1% ethanol) for 24 h and then stimulated with LPS (100 ng/mL) for another 24 h. The data are presented as 
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SVCs, Stromal vascular cells; M1, M1 macrophages; CON, C57BL/6J, control diet; OB, C57BL/6J, high fat + cholesterol diet; OBA, Ldlr −/− mice, high fat + 
cholesterol diet; 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; LPS, lipopolysaccharides; SEMs, standard error of the means; ANOVA, analysis of variance. 
*Significant difference (P < 0.05) between the 1,25(OH)2D3 treated and vehicle-treated group.
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decrease, respectively) only in the OBA group. In adipocytes, the OB group showed higher 
IL-6 and MCP-1 production than the CON group. MCP-1 production by LPS-stimulated 
adipocytes was reduced by the in vitro 1,25(OH)2D3 treatment in all 3 groups. The production 
of IL-6 by adipocytes was unaffected by the 1,25(OH)2D3 treatment.

mRNA expression of genes involved in inflammatory signaling pathways in SVCs
The expression of the genes involved in inflammatory signaling pathways was measured 
to determine if the decreased production of proinflammatory cytokines by 1,25(OH)2D3 
treatment in SVCs from the OBA group was due to the regulation of genes involved in the 
MAPK and NF-κB signaling pathways (Fig. 5). Dusp1 and Dusp10 are phosphatases that 
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Fig. 5. Expression of the genes related to inflammatory signaling pathway in SVCs from CON, OB, and OBA groups. The relative mRNA levels of (A) Tlr2, (B) Tlr4, 
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inactivate MAPK, and nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor alpha (Iκbα) is an inhibitor of NF-κB transcription factor. The mRNA levels of Tlr2, 
Tlr4, Dusp1, Dusp10, and Iκbα in the SVCs, regardless of LPS stimulation, were similar in all 3 
animal groups. The in vitro 1,25(OH)2D3 treatment had no significant effect on Tlr2 expression 
in all 3 groups, but it increased the Dusp10 expression level significantly in the LPS-stimulated 
SVCs in the OBA group (56% higher). Moreover, the Tlr4 and Dusp1 mRNA levels in the LPS-
stimulated SVCs from all 3 groups were significantly decreased by the 1,25(OH)2D3 treatment. 
The mRNA expression of Iκbα was unaffected by the 1,25(OH)2D3 treatment.

DISCUSSION

This study showed that vitamin D can exert anti-inflammatory effects on the adipose tissue 
of atherosclerotic mice. The in vitro treatment with 1,25(OH)2D3 reduced MCP-1 production in 
adipocytes from the control, obese, and atherosclerotic mice and inhibited the production of 
inflammatory cytokines (IL-6 and MCP-1) by decreasing the macrophage ratio in the SVCs of 
atherosclerotic mice.

Adipose tissue is an energy reservoir and a regulator of inflammation in the body, leading to 
a systemic inflammatory state by increasing immune cell infiltration and proinflammatory 
cytokine secretion in obese individuals [37]. In the present study, HFC diet-fed mice in 
the OB and OBA groups had more SVCs and macrophages (per mouse) in VAT than in the 
CON group. There was no significant difference between the OB and OBA groups, a finding 
consistent with a report showing that the degree of macrophage infiltration in adipose tissue 
correlates with adiposity and not with hyperlipidemia and atherosclerosis development [38]. 
In addition, the OBA group had a larger number of total CD4+ T cells than the other groups, 
suggesting that atherosclerosis development may be an independent factor promoting CD4+ 
T cell infiltration into VAT.

The in vitro 1,25(OH)2D3 treatment reduced MCP-1 production by adipocytes in all 3 groups, 
but the levels of MCP-1 and IL-6 production by SVCs were reduced only in the OBA group. The 
levels of MCP-1 and IL-6 production, which are involved in the pathogenesis of atherosclerosis, 
are related to the number of adipose tissue-resident macrophages [39]. Consistent with this, 
the percentage of macrophages in SVCs was reduced only in the OBA group. Sixteen weeks 
of vitamin D supplementation (10,000 IU/kg diet) with a high-fat diet has been reported to 
reduce the expression of M1 macrophage polarization-related genes in whole epididymal fat 
of obese mice [40]. In the present study, however, M1/macrophages (%) analyzed by flow 
cytometry in isolated SVCs was not changed by the in vitro 1,25(OH)2D3 treatment. Dusp10 
expression increased after the in vitro 1,25(OH)2D3 treatment in SVCs from the OBA group. 
Dusp10 is involved in p38 and JNK dephosphorylation, which can inhibit IL-6 and MCP-1 
production [41]. This suggests that vitamin D may help alleviate adipose tissue inflammation 
by reducing the production of proinflammatory cytokines in adipocytes and the SVCs of 
atherosclerotic mice.

On the other hand, adipose tissue-resident macrophages in obese mice increased the 
circulating TNF concentrations but had no direct effect on the development of atherosclerotic 
plaque [42]. In addition, DUSP10 plays an essential role in foam cell formation via ox-LDL-
stimulated NF-κB activation in macrophages, and Dusp10-deficient Ldlr−/− mice showed 
attenuated atherosclerotic plaque formation, suggesting that DUSP10 is a novel target for the 
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treatment of atherosclerosis [43,44]. The expression of Iκbα, a subunit that inhibits NF-κB 
activation, was increased by a 1,25(OH)2D3 treatment [45], but the present study showed 
no change in Iκbα expression after the 1,25(OH)2D3 treatment. Moreover, our study did not 
evaluate the effects of Dusp10 on activating the ox-LDL/NF-κB pathway. Therefore, further 
investigation is required to determine the contribution of vitamin D on plaque development 
in atherosclerosis.

Activating TLR signaling through the recognition of fatty acids or LPS released from lipolysis 
of hypertrophic adipocytes can induce inflammatory cytokine production in adipose tissue 
via the NF-κB and MAPK downstream signaling pathways [46,47]. The subtypes of TLRs are 
involved in different aspects of the atherosclerotic inflammatory response, with TLR4, in 
particular, being closely associated with ox-LDL-induced inflammatory cytokine production 
and foam cell differentiation of macrophages [20]. Adipocyte hypertrophy, macrophage 
accumulation, and local inflammation were not attenuated in Tlr4 and Ldlr double knockout 
mice, but the blood lipid levels and atherosclerosis were improved [48]. In the present study, 
the Tlr4 expression levels in SVCs were decreased significantly by the 1,25(OH)2D3 treatment in 
all 3 groups. TLR4 is a critical receptor that mediates the inflammatory response to LPS, and 
1,25(OH)2D3 downregulates Tlr4 mRNA in monocytes in a time- and dose-dependent manner, 
which can modulate the expression of proinflammatory cytokines [21]. The in vitro 1,25(OH)2D3 
treatment decreased the Dusp1 mRNA levels in all 3 groups. Dusp1 rapidly dephosphorylates and 
inactivates activated MAPKs in mammalian cells [49]. In addition, Dusp1 was upregulated by 
vitamin D in human PBMCs and mouse SVCs, a mechanism for inhibiting the MAPK signaling 
pathway downstream of the TLR-mediated pathway by LPS stimulation [25,26]. On the other 
hand, reduced response to LPS stimulation in SVCs because of a decrease in Tlr4 expression 
by the 1,25(OH)2D3 treatment may have limited its inhibitory mechanism. Dusp1 also plays an 
important role in the lipid metabolism. Because PPARα, a key mediator of lipid oxidation, 
is a target of p38 MAPK, DUSP1 can indirectly attenuate PPARα activity [50,51]. DUSP1 is 
overexpressed in obese humans [52]. On the other hand, mice lacking DUSP1 exhibited 
increased MAPK activity and fatty acid oxidation and were resistant to high-fat diet-induced 
obesity [51]. This suggests that the vitamin D treatment can affect the lipid metabolism in SVCs 
by inhibiting Tlr4 expression and preventing Dusp1 overexpression.

Overall, the in vitro 1,25(OH)2D3 treatment of SVCs decreased the percentage of macrophages/
SVCs and increased the Dusp10 mRNA level only in the OBA group, possibly leading to 
the downregulation of proinflammatory cytokine production. This might be driven by 
specific cholesterol metabolic differences in the OBA group. On the other hand, the in vitro 
1,25(OH)2D3 treatment decreased MCP-1 production by adipocytes and Tlr4 expression in SVCs 
in all 3 groups. Tlr4 expression does not appear to have a major Ldlr−/− mice-specific impact 
on alleviating adipocyte hypertrophy, macrophage accumulation, and local inflammation 
because the vitamin D treatment reduced Tlr4 expression in all 3 groups. Increased Dusp10 
expression in the OBA group might have affected macrophage apoptosis, resulting in 
reduced proinflammatory cytokine production. In conclusion, vitamin D can be beneficial in 
decreasing macrophage recruitment and alleviating the immune response in atherosclerosis.
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