• Title/Summary/Keyword: Adipocyte differentiation

Search Result 391, Processing Time 0.021 seconds

Adipogenic function of tetranectin mediated by enhancing mitotic clonal expansion via ERK signaling

  • Go, Seulgi;Park, Jihyun;Rahman, Safikur;Jin, Juno;Choi, Inho;Kim, Jihoe
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.374-379
    • /
    • 2021
  • Tetranectin (TN), an adipogenic serum protein, enhances adipocyte differentiation, however, its functional mechanism has yet to be elucidated. In the present study, we investigated the adipogenic function of TN by using medium containing TN-depleted fetal bovine serum (TN-del-FBS) and recombinant mouse TN (mTN). The adipocyte differentiation of 3T3-L1 cells was significantly enhanced by mTN supplementation essentially at differentiation induction, which indicated a potential role of the protein in the early differentiation phase. The adipogenic effect of mTN was more significant with insulin in the differentiation induction cocktail, implicating their close functional relationship. mTN enhanced not only the proliferation of growing cells, but also mitotic clonal expansion (MCE) that is a prerequisite for adipocyte differentiation in the early phase. Consistently, mTN increased the phosphorylation of ERK in the early phase of adipocyte differentiation. Results of this study demonstrate that the adipogenic function of mTN is mediated by enhancing MCE via ERK signaling.

The Inhibitory Effect of L. plantarum Q180 on Adipocyte Differentiation in 3T3-L1 and Reduction of Adipocyte Size in Mice Fed High-fat Diet

  • Park, Sun-Young;Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.99-109
    • /
    • 2018
  • In this study, we examined the inhibitory effect of L. plantarum Q180 on adipocyte differentiation in 3T3-L1 and reduction of adipocyte size in mice fed high-fat diet. L. plantarum Q180 inhibited the adipocyte differentiation of 3T3-L1 cells ($18.47{\pm}0.32%$) at a concentration of $400{\mu}g/mL$ ($10^8CFU/g$). As a result of western blot analysis, the expression of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in 3T3-L1 adipocyte treated with $400{\mu}g/mL$ of L. plantarum Q180 decreased 35.16% and 40.07%, respectively, compared with the control. To examine the effects, mice were fed three different diets as follows: ND (n=6) was fed ND and orally administered saline solution; HFD (n=6), HFD and orally administered saline solution; and HFD+Q180 (n=6), HFD and orally administered L. plantarum Q180. After six weeks, the rate of increase of body weight was 13.7% lower in the HFD+Q180 group compared to the HFD group. In addition, the epididymal fat weights of the HFD+Q180 group were lower than that of the HFD group. The change of adipocyte size was measured in diet-induced obese mice. Consequently, the number of large-size adipose tissue was less distributed in the ND and HFD+Q180 groups than in the HFD group. L. plantarum Q180 has an effect on the inhibition of 3T3-L1 adipocyte differentiation, fat absorption and reduction of adipocyte size. L. plantarum Q180 could be applied to functional food products that help improve obesity.

Inhibitiory Effects of Mixture of Atractylodes Macrocephala and Amomum Villosum Extracts on Adipocyte Differentiation in OP9 Cells (백출과 사인 추출 혼합물의 지방세포분화 억제 효과)

  • Kim, Ha Rim;Kwon, Yong Kwan;Choi, Bong Keun;Baek, Dong Gi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.24-29
    • /
    • 2020
  • In this study, we investigated the inhibition effects of mixtures of Atractylodes macrocephala (AM) and Amomum villosum (AV) water extracts on adipocyte differentiation. Treatment with mixtures of AM and AV extracts in a ratio of 3:1 for 24 and 48 hours did not show any cytotoxicity in OP9 cells. Mixtures of AM(3) and AV(1) extracts inhibited adipocyte differentiation, expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAT/enhancer-binding protein alpha (C/EBPα), the major transcription factors of differentiation. It also inhibited the expression of lipoprotein lipase (LPL), adipocyte protein 2 (aP2), which are PPARγ-target genes in adipocyte. We also checked the inhibition effects on cell proliferation during the early stage of differentiation by treatment with mixtures of AM(3) and AV(1) extracts. It markedly inhibited adipocyte proliferation after 48 hours, and also the phosphorylation of ERK1/2 and Akt after 10 min or 3 hour. These results identify a possible mechanism of action of mixtures of AM(3) and AV(1) extracts, suggesting that the mixtures of AM(3) and AV(1) extracts-induced inhibition of ERK and Akt phosphorylation suppresses adipogenesis by inhibiting other signaling cascades that include PPARγ and C/EBPα during the process of OP9 adipocyte differentiation.

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.

Effects of Wax Gourd Extracts on Adipocyte Differentiation and Uncoupling Protein Genes(Ucps) Expression in 3T3-Ll Preadipocytes

  • Kang, Keun-Jee;Kwon, So-Young
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Although various raw plant materials have been demonstrated to exert anti-obesity effects to a greater or lesser extent in both humans and animals when they are used to supplement the diet, it has not been shown extensively that they influence adipocyte cell differentiation involving lipid metabolic gene expressions. Using a well-established 3T3-L1 preadipocyte differentiation system, we decided to look into molecular and cellular event occurring during adipocyte differentiation when raw plant materials aye included in the process, in an effort to demonstrate the potential use of a screening system to define the functions of traditionally well-known materials. To these ends, the effects of ethanol (EtOH) or EtOH/distilled water (DW) extracts of Wax Gourd were examined using cytochemical and molecular analyses to determine whether components of the extracts modulate adipocyte differentiation of 3T3-Ll preadipocytes in vitro. The cytochemical results demonstrated that EtOH or EtOH/DW extracts did not affect lipid accumulation and cell proliferation, although the degree of lipid accumulation was influenced slightly depending on the extract. EtOH extract was highly effective in apoptotic induction during differentiation of 3T3-Ll preadipocytes (p<0.05). Reverse transcription-polymerase chain reaction (RT-PCR) analysis of lipoprotein lipase (LPL), Uncoupling protein (Ucp) 2, 3 and 4 also showed that while LPL expression was not influenced, Ucp2, 3 and 4 were up regulated in the EtOH extract-treated group and down regulated in the EtOH/DW extract-treated group. These changes in gene expressions suggest that the components in different fractions of Wax Gourd extracts may modulate lipid metabolism by either direct or indirect action. Taking these results together, it was concluded that molecular and cellular analyses of adipocyte differentiation involving lipid metabolic genes should facilitate understanding of cellular events occurring during adipocyte differentiation. Furthermore, the experimental scheme and analytical methods used in this study should provide a screening system for the functional study of raw plant materials in obesity research.

SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation

  • Jin, Eom;Juhyun, Choi;Sung-Suk, Suh;Jong Bae, Seo
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.963-975
    • /
    • 2022
  • Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.

Inhibitory Activity of Three Varieties of Adlay (Coix Seed) on Adipocyte Differentiation in 3T3-L1 cells

  • Lee, Mi-Kyeong;Shin, Eun-Jin;Liu, Qing;Hwang, Bang-Yeon;Lee, Jung-Bok;Kim, Sun-Yeou;Lee, Jae-Hak
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.291-294
    • /
    • 2010
  • In obesity, adipocytes undergo abnormal growth characterized by increased cell numbers and differentiation. Thus, inhibition of mitogenesis of preadipocytes and their differentiation to adipocytes would be beneficial for the prevention and progression of obesity. In the present study, we attempted to evaluate antiadipogenic activity of adlay (Coix seed, the seed of Coix lacryma-jobi L. var. ma-yuen Stapf) employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. Because several varieties of adlay are in use in Korea, anti-adipogenic activity of three varieties of adlay such as Sang-Gang, Jo-Hyun and Yulmu-Ilho was evaluated. All the three varieties of adlay showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Adlay, however, showed little effects on adipocyte proliferation. Further studies with interval treatment demonstrated that adlay exerted inhibitory activity on adipocyte differentiation via acting on early stage of adipogenesis. Taken together, adlay might be useful in the prevention of obesity.

Zinc Promotes Adipocyte Differentiation in vitro

  • Tanaka, S.;Takahashi, E.;Matsui, T.;Yano, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.966-969
    • /
    • 2001
  • Some researchers reported that beef marbling was improved by the supplementation of organic zinc to a diet satisfying zinc requirement. We studied the relationship between serum zinc concentration and marbling score or serum adipogenic activity in 40 fattened steers. To determine serum adipogenic activities of the steers, preadipocytes were cultured in medium containing the serum samples during differentiation. Although serum zinc concentration was not related to beef marbling score, it was positively correlated to adipogenic activity. Then, we studied the effect of zinc on adipocyte differentiation. Zinc was added into the medium with the similar methods except the addition of fattened calf serum. The activity of glycerophosphate dehydrogenase, a marker of adipocyte differentiation, was significantly increased by the addition of zinc in culture with or without insulin. These results suggest that zinc possibly improved beef marbling through increasing adipogenic activity during fattening.

TonEBP suppresses adipocyte differentiation via modulation of early signaling in 3T3-L1 cells

  • Kim, Soo Jin;Kim, Taehee;Choi, Han Na;Cho, Eun Jung;Park, Jin Bong;Jeon, Byeong Hwa;Lee, Sang Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.649-655
    • /
    • 2016
  • TonEBP belongs to the Rel family of transcription factors and plays important roles in inflammation as well as kidney homeostasis. Recent studies suggest that TonEBP expression is also involved in differentiation of several cell types such as myocytes, chondrocytes, and osteocytes. In this study, we investigated the roles of TonEBP during adipocyte differentiation in 3T3-L1 cells. TonEBP mRNA and protein expression was dramatically reduced during adipocyte differentiation. Sustained expression of TonEBP using an adenovirus suppressed the formation of lipid droplets as well as the expression of FABP4, a marker of differentiated adipocytes. TonEBP also inhibited the expression of $PPAR{\gamma}$, a known master regulator of adipocytes. RNAi-mediated knock down of TonEBP promoted adipocyte differentiation. However, overexpression of TonEBP did not affect adipogenesis after the initiation of differentiation. Furthermore, TonEBP expression suppressed mitotic clonal expansion and insulin signaling, which are required early for adipocyte differentiation of 3T3-L1 cells. These results suggest that TonEBP may be an important regulatory factor in the early phase of adipocyte differentiation.

Anti-Obesity Effects of Red Onions Extract (적양파 추출물의 항비만 활성)

  • Song, Hwan;Seo, Ji-Hun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.126-131
    • /
    • 2022
  • Obesity is known as a metabolic disease caused by abnormal differentiation of fat tissue due to an imbalance between energy intake and consumption.. The purpose of this study was to confirm the changes in the genes associated with pancreatic lipase activity and pre-adipocyte cell differentiation by treatment of red onion extract treatment. The effect of red onion extract treatment on pre-adipocyte differentiation was evaluated using 3T3-L1 adipocytes, and the activity of related genes was confirmed through Real-Time PCR. As a result of the experiment, the red onion extract inhibit pancreatic lipidase activity by concentration dependent manner. In addition, it was found to inhibit adipocyte differentiation and inhibit the activity of genes(C/EBP-α, C/EBP-β, PPAR-γ) associated with adipocyte differentiation. Through the results of this experiment, it is suggested that the red onion extract can be developed as a high potential material with anti-obesity efficacy by suppressing adipocytic differentiation by controlling genes related to adipocyte differentiation.