Browse > Article
http://dx.doi.org/10.15188/kjopp.2020.02.34.1.24

Inhibitiory Effects of Mixture of Atractylodes Macrocephala and Amomum Villosum Extracts on Adipocyte Differentiation in OP9 Cells  

Kim, Ha Rim (Department of Physiology, School of Korean Medicine, Wonkwang University)
Kwon, Yong Kwan (Department of Physiology, School of Korean Medicine, Wonkwang University)
Choi, Bong Keun (NutraPharm Tech Co., Ltd.)
Baek, Dong Gi (Department of Korean Internal Medicine, Iksan Korean Medicine Hospital, Wonkwang University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.34, no.1, 2020 , pp. 24-29 More about this Journal
Abstract
In this study, we investigated the inhibition effects of mixtures of Atractylodes macrocephala (AM) and Amomum villosum (AV) water extracts on adipocyte differentiation. Treatment with mixtures of AM and AV extracts in a ratio of 3:1 for 24 and 48 hours did not show any cytotoxicity in OP9 cells. Mixtures of AM(3) and AV(1) extracts inhibited adipocyte differentiation, expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAT/enhancer-binding protein alpha (C/EBPα), the major transcription factors of differentiation. It also inhibited the expression of lipoprotein lipase (LPL), adipocyte protein 2 (aP2), which are PPARγ-target genes in adipocyte. We also checked the inhibition effects on cell proliferation during the early stage of differentiation by treatment with mixtures of AM(3) and AV(1) extracts. It markedly inhibited adipocyte proliferation after 48 hours, and also the phosphorylation of ERK1/2 and Akt after 10 min or 3 hour. These results identify a possible mechanism of action of mixtures of AM(3) and AV(1) extracts, suggesting that the mixtures of AM(3) and AV(1) extracts-induced inhibition of ERK and Akt phosphorylation suppresses adipogenesis by inhibiting other signaling cascades that include PPARγ and C/EBPα during the process of OP9 adipocyte differentiation.
Keywords
Atractylodes macrocephala; Amomum villosum; Adipocyte differentiation; OP9 cells; $PPAR{\gamma}$; $C/EBP{\alpha}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Song MY, Shambhunath Bose, Kim HJ. Anti-Obesity Effects of Fermented Samjung-hwan in Hign Fat Diet Rats. Journal of Society of Korean Medicine for Obesity Research 2013;13(1):17-23.
2 Shon MS, Kim GN. Anti-oxidant and anti-obeseactivities of turmeric (Curcuma longa L.) extract in 3T3-L1 Cells. Kor. J. Aesthet. Cosmetol. 2014;12(2):169-5.
3 Wolins NE1, Quaynor BK, Skinner JR, Tzekov A, Park C, Choi K, Bickel PE. OP9 mouse stromal cells rapidly differentiate into adipocytes: characterization of a useful new model of adipogenesis. J. Lipid Res. 2006 ;47(2):450-60.   DOI
4 Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Molcular and Cellular Endocrinology. 2010;316:129-39.   DOI
5 Vazquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res. 2008;39:715-28.   DOI
6 Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 2000;16:145-71.   DOI
7 White UA. Stephens JM. Transcriptional factors that promote formation of white adipose tissue. Molcular and Cellular Endocrinology. 2010;318:10-4.   DOI
8 Wu Z, Puigserver P, Spiegelman BM. Transcriptional activation of adipogenesis. Curr. Opin. Cell Biol. 1999;11(6):689-94.   DOI
9 El-Jack AK, Hamm JK, Pilch PE, Farmer SR. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both $PPAR{\gamma}$ and C/$EBP{\alpha}$. J. Biol. Chem. 1999;274(12):7946-51.   DOI
10 Fox KE, Fankell DM, Erickson PF, Majka SM, Crossno Jr JT, Klemm DJ. Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) $\alpha$, C/EBP $\beta$, or $PPAR{\gamma}$ 2. J. Biol. Chem. 2006;281(52):40341-53.   DOI
11 Bernlohr DA, Bolanowski DM, Kelly Jr TJ, Lane MD. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 1985;260(9):5563-7.   DOI
12 Green H. Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 1976;7(1):105-13.   DOI
13 Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GI. Impaired energy homeostasis in C/$EBP{\alpha}$ knockout mice. Science 1995;269(5227):1108-12.   DOI
14 Bernlohr DA, Bolanowski MA, Kelly TJ Jr, Lane MD: Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 1985;260:5563-7.   DOI
15 Tang QQ, Otto TC, Lane MD: Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. USA 2003;100: 44-49.   DOI
16 Prusty D, Park BH, Davis KE, Farmer SR: Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and C/$EBP{\alpha}$ gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 2002;277:46226-32.   DOI
17 Kohn AD, Summers SA, Birnbaum MJ, Roth RA: Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 1996;271:31372-8.   DOI
18 White UA, Stephens JM. Transcriptional factors that promote formation of white adipose tissue. 2010;29;318(1-2):10-4.   DOI
19 Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S. MicroRNAs: Emerging roles in adipogenesis and obesity. Cell Signal. 2014;26(9):1888-96.   DOI
20 Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. C/$EBP{\alpha}$ induces adipogenesis through $PPAR{\gamma}$: a unified pathway. Genes Dev. 2002;1;16(1):22-6.   DOI
21 The whole country a college of Oriental medicine The joint textbook publish commission compilation. Herbalogy. seoul:Younglimsa. 2007:578-80.
22 Lu S, Zhang T, Gu W, Yang X, Lu J, Zhao R, Yu J. Volatile Oil of Amomum villosum Inhibits Nonalcoholic Fatty Liver Disease via the Gut-Liver Axis. Biomed. Res. Int. 2018;19;2018:3589874.
23 Kwak TK, Jang HS, Lee MG, Jung YS, Kim DO, Kim YB, Kim JI, Kang H. Effect of Orally Administered Atractylodes macrocephala Koidz Water Extract on Macrophage and T Cell Inflammatory Response in Mice. Evid. Based Complement. Alternat. Med. 2018;7;2018:4041873.
24 Song MY, Lim SK, Wang JH, Kim H. The Root of Atractylodes macrocephala Koidzumi Prevents Obesity and Glucose Intolerance and Increases Energy Metabolism in Mice. Int. J. Mol. Sci. 2018;17;19(1):E278.
25 Ministry of Food and Drug Safety(MFDS). The Korean Pharmacopoeia 11th ed. Seoul : Ministry of Food and Drug Safety. 2014:1815-6.
26 Herbology Editorial Committee of Korean Medicine schools. Boncho-hak[Herbology]. Seoul: Yeonglimsa. 2007:336-8.
27 Chen Z, Ni W, Yang C, Zhang T, Lu S, Zhao R, Mao X, Yu J. Therapeutic Effect of Amomum villosum on Inflammatory Bowel Disease in Rats. Front Pharmacol. 2018;20;9:639.   DOI
28 Kim HR, Choi BK. Jung HJ. Anti-Obesity Effects of Mixture of Atractylodes macrocephala and Amomum villosum Extracts. J. Physiol. & Pathol. Korean. Med. 2019;33(5):282-7.   DOI
29 Kim EJ, Kim GY, Kim YM, Choi KH, Jang SJ. Anti-obesity Effect of Mulberry Leaves Extraction in Obese Rats High-fat Diet. J. Physiol. & Pathol. Korean. Med. 2009;23(4):831-6.
30 Yoo EJ, Seo BK, Nam SS, Kang SK. Anti-obesity Effect of Rhizoma Atractylodis Herbal Acupuncture in High Fat Diet-induced Obese ICR Mouse. Journal of Korean acupuncture & moxibustion medicine society 2010;27(6):31-42.
31 Jeong HS. Efficacy of Alismatis Orientale Rhizoma on Obesity induced by High Fat Diet. The Korea Journal of Herbology 2013;28(3):95-106.   DOI