Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0123

SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation  

Jin, Eom (Department of Biosciences, Mokpo National University)
Juhyun, Choi (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University)
Sung-Suk, Suh (Department of Biosciences, Mokpo National University)
Jong Bae, Seo (Department of Biosciences, Mokpo National University)
Abstract
Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.
Keywords
adipocyte; adipogenesis; differentiation; polyamine; putrescine;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Coburn, L.A., Singh, K., Asim, M., Barry, D.P., Allaman, M.M., Al-Greene, N.T., Hardbower, D.M., Polosukhina, D., Williams, C.S., Delgado, A.G., et al. (2019). Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis. Oncogene 38, 1067-1079.   DOI
2 Codoner-Franch, P., Tavarez-Alonso, S., Murria-Estal, R., Herrera-Martin, G., and Alonso-Iglesias, E. (2011). Polyamines are increased in obese children and are related to markers of oxidative/nitrosative stress and angiogenesis. J. Clin. Endocrinol. Metab. 96, 2821-2825.   DOI
3 Darlington, G.J., Ross, S.E., and MacDougald, O.A. (1998). The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057-30060.   DOI
4 Dobrovolskaite, A., Madan, M., Pandey, V., Altomare, D.A., an Phanstiel, O., 4th (2021). The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors. Int. J. Biochem. Cell Biol. 138, 106038.
5 El Ouarrat, D., Isaac, R., Lee, Y.S., Oh, D.Y., Wollam, J., Lackey, D., Riopel, M., Bandyopadhyay, G., Seo, J.B., Sampath-Kumar, R., et al. (2020). TAZ is a negative regulator of PPARgamma activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metab. 31, 162-173.e5.   DOI
6 Hamouda, N.N., Van den Haute, C., Vanhoutte, R., Sannerud, R., Azfar, M., Mayer, R., Cortes Calabuig, A., Swinnen, J.V., Agostinis, P., Baekelandt, V., et al. (2021). ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J. Biol. Chem. 296, 100182.
7 Igarashi, K. and Kashiwagi, K. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem. 48, 506-512.   DOI
8 Ishii, I., Ikeguchi, Y., Mano, H., Wada, M., Pegg, A.E., and Shirahata, A. (2012). Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino Acids 42, 619-626.   DOI
9 Janne, J., Alhonen, L., Pietila, M., and Keinanen, T.A. (2004). Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877-894.   DOI
10 Khan, A., Gamble, L.D., Upton, D.H., Ung, C., Yu, D.M.T., Ehteda, A., Pandher, R., Mayoh, C., Hebert, S., Jabado, N., et al. (2021). Dual targeting of polyamine synthesis and uptake in diffuse intrinsic pontine gliomas. Nat. Commun. 12, 971.
11 Kim, S., Lee, N., Park, E.S., Yun, H., Ha, T.U., Jeon, H., Yu, J., Choi, S., Shin, B., Yu, J., et al. (2021). T-cell death associated gene 51 is a novel negative regulator of PPARgamma that inhibits PPARgamma-RXRalpha heterodimer formation in adipogenesis. Mol. Cells 44, 1-12.   DOI
12 Kraus, D., Yang, Q., Kong, D., Banks, A.S., Zhang, L., Rodgers, J.T., Pirinen, E., Pulinilkunnil, T.C., Gong, F., Wang, Y.C., et al. (2014). Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258-262.   DOI
13 Landau, G., Ran, A., Bercovich, Z., Feldmesser, E., Horn-Saban, S., Korkotian, E., Jacob-Hirsh, J., Rechavi, G., Ron, D., and Kahana, C. (2012). Expression profiling and biochemical analysis suggest stress response as a potential mechanism inhibiting proliferation of polyamine-depleted cells. J. Biol. Chem. 287, 35825-35837.   DOI
14 Larsen, N., Vogensen, F.K., van den Berg, F.W., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., Al-Soud, W.A., Sorensen, S.J., Hansen, L.H., and Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085.
15 Lefterova, M.I. and Lazar, M.A. (2009). New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114.   DOI
16 Li, J., Meng, Y., Wu, X., and Sun, Y. (2020). Polyamines and related signaling pathways in cancer. Cancer Cell Int. 20, 539.
17 Lewerenz, J., Hewett, S.J., Huang, Y., Lambros, M., Gout, P.W., Kalivas, P.W., Massie, A., Smolders, I., Methner, A., Pergande, M., et al. (2013). The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18, 522-555.   DOI
18 Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070-11075.   DOI
19 Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023.   DOI
20 Linhart, H.G., Ishimura-Oka, K., DeMayo, F., Kibe, T., Repka, D., Poindexter, B., Bick, R.J., and Darlington, G.J. (2001). C/EBPalpha is required for differentiation of white, but not brown, adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 98, 12532-12537.   DOI
21 Liu, M.R., Zhu, W.T., and Pei, D.S. (2021). System Xc- : a key regulatory target of ferroptosis in cancer. Invest. New Drugs 39, 1123-1131.   DOI
22 Madan, M., Patel, A., Skruber, K., Geerts, D., Altomare, D.A., and Iv, O.P. (2016). ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Am. J. Cancer Res. 6, 1231-1252.
23 McCubbrey, A.L., McManus, S.A., McClendon, J.D., Thomas, S.M., Chatwin, H.B., Reisz, J.A., D'Alessandro, A., Mould, K.J., Bratton, D.L., Henson, P.M., et al. (2022). Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells. Cell Rep. 38, 110222.
24 Pegg, A.E. and Casero, R.A., Jr. (2011). Current status of the polyamine research field. Methods Mol. Biol. 720, 3-35.   DOI
25 Meireles, P., Mendes, A.M., Aroeira, R.I., Mounce, B.C., Vignuzzi, M., Staines, H.M., and Prudencio, M. (2017). Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci. Rep. 7, 4072.
26 Murray-Stewart, T.R., Woster, P.M., and Casero, R.A., Jr. (2016). Targeting polyamine metabolism for cancer therapy and prevention. Biochem. J. 473, 2937-2953.   DOI
27 Pegg, A.E. (2009). Mammalian polyamine metabolism and function. IUBMB Life 61, 880-894.   DOI
28 Pitocco, D., Di Leo, M., Tartaglione, L., De Leva, F., Petruzziello, C., Saviano, A., Pontecorvi, A., and Ojetti, V. (2020). The role of gut microbiota in mediating obesity and diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 24, 1548-1562.
29 Poulin, R., Casero, R.A., and Soulet, D. (2012). Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42, 711-723.   DOI
30 Ramos-Molina, B., Queipo-Ortuno, M.I., Lambertos, A., Tinahones, F.J., and Penafiel, R. (2019). Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front. Nutr. 6, 24.
31 Rosen, E.D., Walkey, C.J., Puigserver, P., and Spiegelman, B.M. (2000). Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293-1307.   DOI
32 Roy, U.K., Rial, N.S., Kachel, K.L., and Gerner, E.W. (2008). Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol. Carcinog. 47, 538-553.   DOI
33 Soulet, D., Covassin, L., Kaouass, M., Charest-Gaudreault, R., Audette, M., and Poulin, R. (2002). Role of endocytosis in the internalization of spermidine-C2-BODIPY, a highly fluorescent probe of polyamine transport. Biochem. J. 367, 347-357.   DOI
34 Samal, K., Zhao, P., Kendzicky, A., Yco, L.P., McClung, H., Gerner, E., Burns, M., Bachmann, A.S., and Sholler, G. (2013). AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int. J. Cancer 133, 1323-1333.   DOI
35 Soda, K., Kano, Y., Sakuragi, M., Takao, K., Lefor, A., and Konishi, F. (2009). Long-term oral polyamine intake increases blood polyamine concentrations. J. Nutr. Sci. Vitaminol. (Tokyo) 55, 361-366.   DOI
36 Song, J. and Deng, T. (2020). The adipocyte and adaptive immunity. Front. Immunol. 11, 593058.
37 Soulet, D., Gagnon, B., Rivest, S., Audette, M., and Poulin, R. (2004). A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 279, 49355-49366.   DOI
38 Sugiyama, Y., Nara, M., Sakanaka, M., Gotoh, A., Kitakata, A., Okuda, S., and Kurihara, S. (2017). Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: potential presence of novel polyamine metabolism and transport genes. Int. J. Biochem. Cell Biol. 93, 52-61.   DOI
39 Tanaka, T., Yoshida, N., Kishimoto, T., and Akira, S. (1997). Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 16, 7432-7443.   DOI
40 Tang, Q.Q. and Lane, M.D. (1999). Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231-2241.   DOI
41 Yeon, J., Suh, S.S., Youn, U.J., Bazarragchaa, B., Enebish, G., and Seo, J.B. (2021). Methanol extract of Mongolian Iris bungei Maxim. stimulates 3T3- L1 adipocyte differentiation. J. Nanosci. Nanotechnol. 21, 3943-3949.   DOI
42 Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156.   DOI
43 van Veen, S., Martin, S., Van den Haute, C., Benoy, V., Lyons, J., Vanhoutte, R., Kahler, J.P., Decuypere, J.P., Gelders, G., Lambie, E., et al. (2020). ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419-424.   DOI
44 Wang, L., Chen, X., and Yan, C. (2022). Ferroptosis: an emerging therapeutic opportunity for cancer. Genes Dis. 9, 334-346.   DOI
45 Zahedi, K., Barone, S., and Soleimani, M. (2022). Polyamines and their metabolism: from the maintenance of physiological homeostasis to the mediation of disease. Med. Sci. (Basel) 10, 38.
46 Bridges, R.J., Natale, N.R., and Patel, S.A. (2012). System xc-cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20-34.   DOI
47 Abdulhussein, A.A. and Wallace, H.M. (2014). Polyamines and membrane transporters. Amino Acids 46, 655-660.   DOI
48 Ali, A.T., Hochfeld, W.E., Myburgh, R., and Pepper, M.S. (2013). Adipocyte and adipogenesis. Eur. J. Cell Biol. 92, 229-236.   DOI
49 Bonhoure, N., Byrnes, A., Moir, R.D., Hodroj, W., Preitner, F., Praz, V., Marcelin, G., Chua, S.C., Jr., Martinez-Lopez, N., Singh, R., et al. (2015). Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev. 29, 934-947.   DOI
50 Brenner, S., Bercovich, Z., Feiler, Y., Keshet, R., and Kahana, C. (2015). Dual regulatory role of polyamines in adipogenesis. J. Biol. Chem. 290, 27384-27392.   DOI
51 Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470-1481.   DOI
52 Casero, R.A. and Pegg, A.E. (2009). Polyamine catabolism and disease. Biochem. J. 421, 323-338.   DOI
53 Casero, R.A., Jr., Murray Stewart, T., and Pegg, A.E. (2018). Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 18, 681-695.   DOI
54 Casti, A., Orlandini, G., Reali, N., Bacciottini, F., Vanelli, M., and Bernasconi, S. (1982). Pattern of blood polyamines in healthy subjects from infancy to the adult age. J. Endocrinol. Invest. 5, 263-266.   DOI
55 Cerrada-Gimenez, M., Tusa, M., Casellas, A., Pirinen, E., Moya, M., Bosch, F., and Alhonen, L. (2012). Altered glucose-stimulated insulin secretion in a mouse line with activated polyamine catabolism. Transgenic Res. 21, 843-853.   DOI