• Title/Summary/Keyword: Adiabatic

Search Result 763, Processing Time 0.029 seconds

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

Effect of Geometric Parameters on the Performance of an Automotive Scroll Compressor Using R-134a (R-134a를 사용한 자동차용 스크롤 압축기의 스크롤 형상변화가 성능에 미치는 영향)

  • Lee, Geonho;Kim, Haksoo;Cho, Keumnam;Yoo, Jungyul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1635-1646
    • /
    • 1998
  • The present study investigated the effects of geometric parameters considered on the performance of an automotive scroll compressor by assuming ideal, semi-real and real gases for R-134a. The geometric parameters were center thickness of scroll, height of scroll and the size of discharge port. Fourth-order Runge-Kutta method was applied to solve the thermodynamic equations, leaking rate equation and the equation of motion of discharge valve for ideal, semi-real, and real gases. The volumetric and adiabatic efficiencies for semi-real and real gases differed little, but those for ideal gas differed by 18% and 25% compared with those for real gas at 2,000rpm. The volumetric efficiency changed little as the design angle of scroll (${\gamma}$) changed, but the adiabatic efficiency at ${\gamma}$ of $34^{\circ}$ was higher by 2.4% than that of $147^{\circ}$ for 2,000rpm. The volumetric and adiabatic efficiencies at scroll height of 29.8mm were higher by 1.7% and 2.8% than those of 65.8mm. The volumetric efficiency changed little as the size of discharge port changed, but the adiabatic efficiency increased a little as the size of discharge port decreased.

Thermodynamic Analysis of the Diabatic Efficiency of Turbines and Compressors (터빈과 압축기의 비단열 효율에 대한 열역학적 해석)

  • Park, Kyoung Kuhn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.139-148
    • /
    • 2016
  • Thermodynamic analysis is conducted on the first-order approximation model for turbines and compressors. It is shown that the adiabatic efficiency could be greater than unity, depending on the entropic mean temperature, entropy generation, thermal reservoir temperature, and heat transfer. Therefore, adiabatic efficiency applied to a diabatic control volume results in an error overestimating its performance. To resolve this overestimation, it is suggested that a reversible diabatic process be referred to as an ideal process to evaluate diabatic efficiency. The diabatic efficiency suggested in this work is proven to always be less than unity and it is smaller than the exergy efficiency in most cases. The diabatic efficiency could be used as a more general definition of efficiency, which would include adiabatic efficiency.

Simulation of the effects of a non-adiabatic capillary tube on refrigeration cycle (비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션)

  • Park, Sang-Goo;Son, Ki-Dong;Jeong, Ji-Hawn;Kim, Lyun-Su
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.255-262
    • /
    • 2008
  • The simulation of refrigeration cycle is important since the experimental approach is too costly and time-consuming. The present simulation focuses on the effect of capillary tube-suction line heat exchangers (CT-SLHX), which are widely used in small vapor compression refrigeration systems. The simulation of steady states is based on fundamental conservation equations of mass and energy. These equations are solved simultaneously through iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tubes. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP). These results can be used in either design calculation of capillary tube length for refrigeration cycle or effect of suction line heat exchanging on refrigeration cycle.

  • PDF

Optimized Design of Low-power Adiabatic Dynamic CMOS Logic Digital 3-bit PWM for SSL Dimming System

  • Cho, Seung-Il;Mizunuma, Mitsuru;Yokoyama, Michio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • The size and power consumption of digital circuits including the dimming circuit part will increase for high-performance solid state lighting (SSL) systems in the future. This study examined the low-power consumption of adiabatic dynamic CMOS logic (ADCL) due to the principles of adiabatic charging. Furthermore, the designed low-power ADCL digital pulse width modulation (PWM) was optimized for SSL dimming systems. For this purpose, an ADCL digital 3-bit PWM was optimized in two steps. In the first step, the architecture of the ADCL digital 3-bit PWM was miniaturized. In the second step, the clock cut-off circuit was designed and added to the ADCL PWM. As a result, compared to the original configuration, 60 transistors and 15 capacitors of ADCL digital 3-bit PWM were reduced for miniaturization. Moreover, the clock cut-off circuit, which controls wake-up and sleep mode of ADCL D-FFs, was designed. The power consumption of an optimized ADCL digital PWM for all bit patterns decreased by 54 %.

  • PDF

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

Adiabatic Analysis of 1180MPa Advanced High Strength Steel by Impact Weight (충격하중에 의한 1180MPa급 초고강도강의 단열해석)

  • Kim, Kun-Woo;Lee, Jae-Wook;Yang, Min-Seok;Lee, Seong-Yeop;Kim, Da-Hye;Lee, Jae-Jin;Mun, Ji-Hoon;Park, Ji-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.93-98
    • /
    • 2022
  • Adiabatic blanking is a method to improve productivity through an autocatalytic cycle that occurs repeatedly through plastic deformation and thermal softening caused by impact energy. In this study, an axisymmetric analysis model comprising a punch, die, holder, and specimen was developed to confirm the temperature and deformation characteristics caused by an impact load. Through this, the impact energy, diameter of the punch, gap between the punch and die, and the effect of the fillet were analyzed. Because this process occurs in a very short time, adiabatic analysis can be performed using the explicit time-integration method. The analysis, confirmed that it is necessary to design a structure capable of increasing the local temperature and plastic deformation by controlling the impact energy, working area, gap, and the fillet.

Correcting Stress-Strain Curves of Nimonic 80A Alloy based on Direct Measurement of Barreling and Heat Generation (압축시험에서의 배럴링 및 소성발열 직접 측정에 의한 Nimonic 80A 합금의 응력-변형률 선도 보정)

  • S.H. Kang;H.W. Jung;H. Lee;S.J. Kim;Y.S. Oh;J. Jung;S. Oh;H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.215-220
    • /
    • 2023
  • In this study, the correction process of stress-strain curves obtained from hot compression test is introduced since the barreling induced by friction and adiabatic heat generation induced by plastic work occur under high strain rate. A shear friction factor was quantitatively estimated by measuring the dimension of barreling and temperature rise due to adiabatic heat generation was directly measured during compression test. Thereafter, the stress-strain curves were re-evaluated by introducing several equations to correct the effects of the friction and temperature rise. It was found that adiabatic factor at strain rate of 10/s is in the range of about 0.5 to 0.75 for Nimonic 80A and decreases as the assigned temperature increases.

An Experimental Study on the Evaluation of Adiabatic Temperature Rise of Concrete (콘크리트의 단열온도 상승량의 정량화에 관한 실험적 연구)

  • 강석화;이용호;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.186-196
    • /
    • 1995
  • In this study, parameters such as unit cement weight and placing temperature which influence on temperature rise and temperature rise velocity are investigated through adiabatic tests for the domestic ordinary portland cement(0PC). Adiabatic temperature rise suggested by Korean Concrete Spec. are compared with that from this experimental results. As a result of this study, adiabatic temperature rise of OPC suggested spec. is overestimated. Also it is shown that 2-parameter equation suggested in the spec. overestimate heat evolution at early age and reasonable prediction of heat evolution can be obtained by using 3-parameter equation. Results of numerical analysis by using the input data from this test and the suggested values from spec. shows similar temperatures. However thermal stresses pridicted using input value from spec. may result 20% more than that from this test in case of externally restricted state.

Evaulation of Adiabatic Temperature Rise for Concrete with Blast-Furnace Slag replacement (고로슬래그 미분말 치환율에 따른 콘크리트의 단열온도상승 평가)

  • Kim, Joo Hyung;Lee, Do Heun;Jung, Sang Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Recently, the interest is increasing about the eco-friendly concrete. Accordingly, the blast furnace slag(BFS), a by-product of industry is known for improving the durability through compaction in concrete and is expanding the use. The research about BFS in concrete be accomplished frequently. In this study, we should know the hydration characteristic of BFS concrete the through the adiabatic temperature rise test due to the replacement of a variety of BFS. In addition, we produced the regression analysis factors through the test result and analyzied the effect for the replacement of BFS. According to test results, the compressive strength showed a slight degradation or equal and the the adiabatic temperature rise figure and rising factors are went down for rising replacment of BFS. In the future, the study about the adiabatic temperature rise equation for the various replacement of BFS and binder is considered necessary.

  • PDF