DOI QR코드

DOI QR Code

Thermodynamic Analysis of the Diabatic Efficiency of Turbines and Compressors

터빈과 압축기의 비단열 효율에 대한 열역학적 해석

  • 박경근 (국민대학교 기계시스템공학부)
  • Received : 2015.08.17
  • Accepted : 2016.01.18
  • Published : 2016.03.01

Abstract

Thermodynamic analysis is conducted on the first-order approximation model for turbines and compressors. It is shown that the adiabatic efficiency could be greater than unity, depending on the entropic mean temperature, entropy generation, thermal reservoir temperature, and heat transfer. Therefore, adiabatic efficiency applied to a diabatic control volume results in an error overestimating its performance. To resolve this overestimation, it is suggested that a reversible diabatic process be referred to as an ideal process to evaluate diabatic efficiency. The diabatic efficiency suggested in this work is proven to always be less than unity and it is smaller than the exergy efficiency in most cases. The diabatic efficiency could be used as a more general definition of efficiency, which would include adiabatic efficiency.

터빈과 압축기의 1차 근사 모델을 대상으로 열역학적 해석을 하여 단열 효율의 특성을 파악하였다. 비단열 터빈과 압축기에 대해서는 엔트로피 평균 온도와 생성 엔트로피, 열원 온도, 열전달량 등의 값에 따라 단열 효율이 1보다 커질 수 있다. 즉, 단열 효율을 비단열 검사체적에 적용하면 실제보다 성능을 높게 평가하는 오류가 생길 수 있다. 이 문제를 해결하는 대안으로 실제 과정과 동일한 열이 전달되는 가역 비단열 과정을 이상 과정으로 채택하여 정의하는 비단열 효율을 제안한다. 이 비단열 효율은 항상 0과 1 사이에 있으며, 대부분의 경우 엑서지 효율보다 작음을 입증하였다. 비단열 효율은 단열 효율을 포함하는 더 일반적인 효율의 정의식으로 사용할 수 있다.

Keywords

References

  1. Cengel, Y. A. and Boles, M. A., 2015, Thermodynamics: An Engineering Approach, 8th Ed., McGraw-Hill, New York.
  2. Borgnakke, C. and Sonntag, R. E., 2014, Fundamentals of Thermodynamics, 8th Ed., SI Version, John Wiley & Sons, Hoboken.
  3. Moran, M. J., Shapiro, H. N., Boettner, D. D. and Bailey, M. B., 2012, Principles of Engineering Thermodynamics, 7th Ed., SI Version, John Wiley & Sons, Hoboken.
  4. Casey, M. V. and Fesich, T. M., 2010, "The Efficiency of Turbocharger Compressors with Diabatic Flows," Journal of Engineering for Gas Turbines and Power, Vol. 132, No. 7, 072302. https://doi.org/10.1115/1.4000300
  5. Verstraete, D. and Hewakuruppu, Y., 2012, "Impact of Heat Transfer on Centrifugal Compressors of Micro Turbines" In: ASME 2012 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 983-991.
  6. Sirakov, B. and Casey, M., 2013, "Evaluation of Heat Transfer Effects on Turbocharger Performance," Journal of Turbomachinery, Vol. 135, No. 2, 021011. https://doi.org/10.1115/1.4006608
  7. Kaufmann, A., 2014, "Using Turbocharger Maps in Gas Exchange Simulation and Engine Control Units," Forschung im Ingenieurwesen, Vol. 78, No. 1-2, pp. 45-57. https://doi.org/10.1007/s10010-014-0171-0
  8. Kim, M., Im, J. and Kim, Y., 2015, "A Study for Efficiency Definition of a High Pressure Cooled Turbine," 2015 KSPE Spring Conference, pp. 424-431.
  9. Herold, K. E., Radermacher, R. and Klein, S. A., 1996, Absorption Chillers and Heat Pumps, CRC Press, pp. 13-14.