• Title/Summary/Keyword: Adhesion coefficient

Search Result 188, Processing Time 0.025 seconds

Development of the Measurement System for Evaluating Mechanical Properties of Nano-diamond Coated Film (나노 다이아몬드 코팅박막의 기계적 특성 평가를 위한 계측시스템의 개발)

  • Kweon, Hyun Kyu;Lee, So Jin;Kweon, Yong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • In this study, a new adhesion evaluating equipment and data processing methods were developed to overcome some limitations of existing evaluating equipment. Nano-diamond coated tool is a specimen of experiment. When applying frictional force and shear force on the specimen by a rotating polishing pad, delamination occurs at a moment. During each experiment, the vibration, load, and torque is obtained by accelerometer, loadcell and torque s+ kpensor. Frictional force and coefficient of friction are obtained by calculating torque and load. Based on FFT transformation, acceleration is processed and analyzed. As a result, the moment of delamination and the load at that time can be detected by the new developed equipment and measurement system. Finally, we call this load as an Adhesion force.

Effect of the Brake Shoe on the Brake Force of the Freight Car (화차용 브레이크 슈의 제동에 미치는 영향)

  • 최경진;이동형
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.125-130
    • /
    • 2001
  • It is vary importance that stopping distance for the freight train and need to design parameter of the brake force and friction coefficient. Acoording to the brake force between shoe and wheel less than the adhesion between wheel and rail. Because of vary difference between empty and weight car of 0∼500kN, this solution was made to application for variable loaded brake system. When the V=110km/h. the emergency stopping distance of freight train is about 700m, so this study was considered on the two condition, one of the increse brake force and to be different of the increse friction coefficient on the brake shoe. It was useful increse friction coefficient. Result of study, analyze effect of the brake shoe on the brake force of the freight car and high friction coefficient were proposed. To do this, ${\mu}$=0.155${\pm}$10% when S=600m on the V=110km/h of the train, 2 groove of friction surface on the temperature distribution were considered.

  • PDF

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

Frictional behaviour of epoxy reinforced copper wires composites

  • Ahmed, Rehab I.;Moustafa, Moustafa M.;Talaat, Ashraf M.;Ali, Waheed Y.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.165-178
    • /
    • 2015
  • Friction coefficient of epoxy metal matrix composites were investigated. The main objective was to increase the friction coefficient through rubber sole sliding against the epoxy floor coating providing appropriate level of resistance. This was to avoid the excessive movement and slip accidents. Epoxy metal matrix composites were reinforced by different copper wire diameters. The epoxy metal matrix composites were experimentally conducted at different conditions namely dry, water and detergent wetted sliding, were the friction coefficient increased as the number of wires increased. When the wires were closer to the sliding surface, the friction coefficient was found to increase. The friction coefficient was found to increase with the increase of the copper wire diameter in epoxy metal matrix composites. This behavior was attributed to the fact that as the diameter and the number of wires increased, the intensity of the electric field, generated from electric static charge increased causing an adhesion increase between the two sliding surfaces. At water wetted sliding conditions, the effect of changing number of wires on friction coefficient was less than the effect of wire diameter. The presence of water and detergent on the sliding surfaces decreased friction coefficient compared to the dry sliding. When the surfaces were detergent wetted, the friction coefficient values were found to be lower than that observed when sliding in water or dry condition.

Effects of Interfacial Adhesion and Chemical Crosslinking of HDPE Composite Systems on PTC Characteristics (HDPE 가교 결합과 계면 접착력 변화에 따른 PTC 특성 연구)

  • 김재철;이종훈;남재도
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.275-284
    • /
    • 2003
  • The positive temperature coefficient (PTC) effects of high density polyethylene (HDPE)/carbon black composite materials were investigated by enhancing adhesive characteristics of electrodes and controlling HDPE chemical crosslinking. When the silver paste was used as an electrode for the same 45 wt% HDPE/carbon composites, the resistance was over 1 $\Omega$, which should be compared with the resistance of 0.2 $\Omega$ for the dendritic copper electrode. In general, the silver-paste electrode exhibited higher electrical resistance than cupper electrode due to the interfacial resistance between the electrode and PTC composites. The HDPE/carbon composite exhibited typical PTC characteristics maintaining a constant resistance up to vicat point and showing a maximum at the melting point of HDPE. The crosslinked HDPE significantly decreased the negative temperature coefficient (NTC) phenomena, and desirably showed a constant or slightly increasing feature of electrical resistance in the high temperature region.

Behavior of Reciprocating Dry Sliding Wear of Plastics Against Steel (플라스틱재료의 왕복동 마찰마멸거동)

  • 김충현;안효석;정태형
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Friction and wear tests have been performed on nylon, acetal resin, and PTFE (polytetrafluoroethylene), in reciprocating dry sliding conditions against steel discs. According to the results, acetal resin showed the lowest wear rates and PTFE exhibited the lowest friction coefficient. The prominent wear mechanisms found were adhesion and abrasion.

A Study on the Compression Behaviour of Filter Cake (필터 케익내의 압축현상에 관한 연구)

  • 김정민;정용원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.469-470
    • /
    • 1999
  • 본 연구는 가스 중에 포함되어 있는 입자들을 fabric filter를 이용하여 집진할 때 형성되는 dust filter cake의 구조 및 압력강하가 입자간의 부착력(adhesion force), 마찰계수(friction coefficient)등의 여러 관련변수에 따라 변화되는 양상을 전산모사를 통해 예측하고자 하는 것이다.(중략)

  • PDF

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.