• 제목/요약/키워드: Addressed position

검색결과 106건 처리시간 0.028초

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

MOLECULAR-DYNAMIC SIMULATION ON THE STATICAL AND DYNAMICAL PROPERTIES OF FLUIDS IN A NANO-CHANNEL

  • Hoang, Hai;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.24-34
    • /
    • 2009
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids confined between two plates that are separated by 1.086 nm; included in the statical properties are the density distribution and the static structure, and the autocorrelation velocity function in the dynamic property. Three kinds of fluids considered in this study are the Lennard-Jones fluid, water and aqueous sodium-chloride solution. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

한국어 아동 지향어에 나타난 폐쇄음의 음향 음성학적 특성 (Acoustic Characteristics of Korean Stops in Korean Child-directed Speech)

  • 김민정
    • 말소리와 음성과학
    • /
    • 제1권3호
    • /
    • pp.117-122
    • /
    • 2009
  • A variety of cross-linguistic studies has documented that the acoustic properties of speech addressed to young children include exaggeration of pitch contours and acoustically salient features of phonetic units. It has been suggested that phonetic modifications of child-directed speech facilitate young children's learning of speech sounds by providing detailed phonetic information about the target word. While there are several studies reporting vowel modifications in speech to infants (i.e., hyper-articulated vowels), there has been little research about consonant modifications in speech to young children (except for VOT). The present study examines acoustic properties of Korean stops in Korean mothers' speech to their children (seven children aged 27 to 38 months). Korean tense, lax, and aspirated stops are all voiceless in word-initial position, and are perceptually differentiated by several acoustic parameters including VOT, $f_0$ of the following vowel, and the amplitude difference of the first and second harmonics at the voice onset of the following vowel. This study compares values of these parameters in Korean child-directed speech to those in adult-directed speech from same speakers. Conclusions focus on the acoustic properties of Korean stops in child-directed speech and how they are modified to help Korean young children learn the three-way phonetic contrast.

  • PDF

교착 회피를 고려한 내고장성 세다리 걸음새 (Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance)

  • 노지명;양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

Low-frequency Vibration Suppression Control in a Two-mass System by Using a Torque Feed-forward and Disturbance Torque Observer

  • Li, Qiong;Xu, Qiang;Wu, Ren
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.249-258
    • /
    • 2016
  • Given that elastic connection is often used between motor drives and load devices in industrial applications, vibration often occurs at the load side. Vibration suppression is a crucial problem that needs to be addressed to achieve a high-performance servo-control system. Scholars have presented many strategies to suppress vibration. In this study, we propose a method to diminish vibration by using a torque feed-forward and disturbance torque observer. We analyze the system performance and explain the principle of the proposed vibration suppression method based on the transfer functions of the system. The design of controller parameters is another important issue in practical applications. We accordingly provide a succinct outline of the design specifications based on the coefficient diagram method. Furthermore, we build a model under the Simulink environment and conduct experiments to validate the proposed method. Results show that speed and position vibrations are successfully suppressed by the proposed method.

OTM 단말기 안테나 시선 안정화 제어 (Stabilization Control of line of sight of OTM(On-The-Move) Antenna)

  • 강민식;조용완
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2073-2082
    • /
    • 2010
  • The 4-th generation of mobile communication aims to realize global, fast and mobile communication service. The satellite communication charges a key role in this field. In this study, an OTM(On-The-Move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite was addressed. Since vehicles move during communication, active antenna line-of-sight stabilization is a core technology to guarantee high satellite communication quality. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. Various disturbance torques such as static and dynamic mass imbalance torques, variation of moment of inertia according to elevation angle, friction torque related to vehicle motion, equivalent disturbance torque due to antenna roll motion, etc. were analyzed. As a robust stabilization control, rate feedback with sliding mode control and position feedback with proportional+integral control was suggested. To compensate antenna roll motion, a supplementary roll rate feed forward control was included beside of the feedback control loop. The feasibility of the analysis and the proposed control design were verified along with some simulation results.

가변감지영역을 갖는 센서네트워크에서 노드감지에너지의 최소화를 위한 노드위치방법 (A Node Positioning Method for Minimizing the Node Sensing Energy in Sensor Networks with Adjustable Sensing Ranges)

  • 성기택;성길영;우종호
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.2099-2106
    • /
    • 2006
  • 본 논문은 가변의 감지영역을 갖는 무선 센서 네트워크에서 센서노드의 감지에너지 소비를 최소화하기 위한 노드의 위치를 결정하는 방법에 관하여 기술하였다. 감지에너지의 소비를 최소화하기 위해서는 이웃하는 노드들과의 중첩되는 감지면적이 최소화되어야 한다. 중첩영역을 최소로 하는 노드의 위치를 결정하기 위하여, 이웃하는 노드 사이의 감지영역과 전개각 및 각 노드의 감지반경을 이용하여 최적화 식을 유도하였다. 이를 기반으로 한 ASRC(adjustable sensing ranges control)에 의한 새로운 노드 위치방법을 제안하였다. 제 안한 방법은 기존의 조건에 의한 방법과는 달리 수학적 식에 근거하여 유도한 모델로서, 시뮬레이션을 통하여 감지에너지 소모에 대한 유효성을 확인하였다.

분말 코팅을 위한 원자층 증착법 (Atomic Layer Deposition for Powder Coating)

  • 최석;한정환;최병준
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.243-250
    • /
    • 2019
  • Atomic layer deposition (ALD) is widely used as a tool for the formation of near-atomically flat and uniform thin films in the semiconductor and display industries because of its excellent uniformity. Nowadays, ALD is being extensively used in diverse fields, such as energy and biology. By controlling the reactivity of the surface, either homogeneous or inhomogeneous coating on the shell of nanostructured powder can be accomplished by the ALD process. However, the ALD process on the powder largely depends on the displacement of powder in the reactor. Therefore, the technology for the fluidization of the powder is very important to redistribute its position during the ALD process. Herein, an overview of the three types of ALD reactors to agitate or fluidize the powder to improve the conformality of coating is presented. The principle of fluidization its advantages, examples, and limitations are addressed.

J2 섭동을 고려한 비공면 타원 궤도에서의 우주비행체 요격 (Spacecraft Intercept on Non-coplanar Elliptical Orbit Considering J2 Perturbation)

  • 오승렬;이현재
    • 한국항공우주학회지
    • /
    • 제46권11호
    • /
    • pp.902-910
    • /
    • 2018
  • 본 논문은 지구의 J2 섭동을 고려한 비공면 타원궤도에서의 우주비행체의 요격 문제를 다룬다. J2에 의한 영향은 지구를 돌고 있는 우주비행체 궤도를 변화시키는 주된 요인이 되며, 이를 해결하기 위해 실시간 요격 방법을 제안한다. 구형의 지구와 순간추력을 고려한 운동방정식을 기반으로 최적화 문제를 구성하고 수치적으로 얻어진 최적해를 인터셉터의 추진방향으로 설정한다. 위치 오차는 최적화 문제를 반복적으로 해결하고 인터셉터의 추진방향을 수정하는 방식으로 해결한다. 다양한 궤도를 상황을 고려하여 제안하는 방법을 검증한다.

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.