• Title/Summary/Keyword: Additional Stiffness

Search Result 281, Processing Time 0.023 seconds

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • HAM JUH-HYEOK
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

A FEASIBILITY STUDY ON THE APPLICATION OF THE KNITTED GLASS FABRIC COMPOSITES TO FIXED PROSTHODONTIC RESTORATION IN DENTISTRY (Knitted Glass Fabric 강화 복합레진을 사용한 고정성 치과보철물에 대한 적용성 평가)

  • Chung Jae-Min;Lee Kyu-Bok;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.429-440
    • /
    • 2002
  • Current dental restorations present a relatively weak resistance to fracture. Owing to their unique mechanical properties, fibre-reinforced polymers are now being considered. Unidirectional or woven continuous fibres, made of glass, polyethylene, carbon or Kevlar, have been evaluated. This study focused on the use of glass fibre knitted fabrics to reinforce acrylate resins, in order to investigate the possibility to construct single crowns as well as three unit bridges. Some points affecting the final composite system were tested ; 1) static strength, with focus on the stress transfer under a occlusal contact point ; 2) modelling of a three nit bridge ; 3) fatigue strength as a posterior three unit bridge material. The study demonstrated that knitted fabric reinforcements are showing an interesting compromise between stiffness, static strength for single crown. For three unit bridge applications in the posterior arch, however knitted glass fabric reinforcements were not strong enough in fatigue An additional reinforcement in the posterior arch fixed partial denture design was recommended.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Free Vibration Analysis of Arches Using Higher-Order Mixed Curved Beam Elements (고차 혼합 곡선보 요소에 의한 아치의 자유진동해석)

  • Park Yong Kuk;Kim Jin-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.18-25
    • /
    • 2006
  • The purpose of this research work is to demonstrate a successful application of hybrid-mixed formulation and nodeless degrees of freedom in developing a very accurate in-plane curved beam element for free vibration analysis. To resolve the numerical difficulties due to the spurious constraints, the present element, based on the Hellinger-Reissner variational principle and considering the effect of shear deformation, employed consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees. The stress parameters were eliminated by the stationary condition, and the nodeless degrees were condensed by Guyan Reduction. Several numerical examples indicated that the property of the mass matrix as well as that of the stiffness matrix have a great effect on the numerical performance. The element with consistent mass matrix produced best results on convergence and accuracy in the numerical analysis of Eigenvalue problems. Also, the higher-order mixed curved beam element showed a superior numerical behavior for the free vibration analyses.

Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header (주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

The Study on the Composition of the Encoder for Driving the High Speed Spindle Motor (고속 스핀들 전동기 구동을 위한 자기식 엔코더 구성에 관한 연구)

  • Choi Cheol;Kim Cheol-U;Lee Sang-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.253-259
    • /
    • 2005
  • Magnetic encoder with relatively low pulse per rotation is generally used for detecting speed of the high-speed rotating machine. It is due to the fact of the mechanical problems of vibration and bearing stiffness and also the limit of maximum output pulse of the mounted encoder. The magnetic encoder is divided into two types, that is, toothed gear-wheel method and magnetic wheel method according to the shape of the rotation disk. In case of detecting speed by the tooth gear-wheel, the encoder itself can be acted as the additional inertia where the number of tooth determining the output pulse and the width of the wheel detecting the change of the magnetic flux density are relatively enough large considering the volume of the rotating machine. While the magnetic wheel method has the limit of the magnetizing number of the ring magnet, there is relatively few, if nv, the influence of inertia on the machine. In this paper, it is proposed a simple magnetic wheel encoder suited for the high speed rotating machine and the method of signal processing and the output characteristics are examined through the V/F operation of max 48,000(rpm) and 2.4(KW) spindle motor.

Lubrication Performance Analysis and Experiment of a Low-Speed Dry Gas Seal having an Inner Circular Groove (내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석 및 실험)

  • Lee, An-Sung;Kim, Jun-Ho
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2005
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0 e + 07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting. A seal levitation test rig was designed and constructed. Experimental results at 500 rpm agreed well with analytical predictions and the applied lubrication analysis method was verified.