• Title/Summary/Keyword: Adaptive sliding mode control

Search Result 245, Processing Time 0.026 seconds

Sliding Mode Control of Induction Motors Using an Adaptive Sliding Mode Flux Observer (적응 슬라이딩모드 자속 관측기를 이용한 인덕션 모터의 슬라이딩 모드 제어)

  • Kim, Do-Woo;Chung, Ki-chull;Lee, Seng-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.587-594
    • /
    • 2005
  • An adaptive observer for rotor resistance is designed to estimate rotor flux for the a-b model of an induction motor assuming that rotor speed and stator currents are measurable. A singularly perturbed model of the motor is used to design an Adaptive sliding mode observer which drives the estimated stator currents to their true values in the fast time scale. The adaptive observer on the sliding surface is based on the equivalent switching vector and both the estimated fluxes and the estimated rotor resistance converge to their true values. A speed controller considering the effects of parameter variations and external disturbance is proposed in this paper. First, induction motor dynamic model at nominal case is estimated. based on the estimated model, speed controller is designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a robust controller are designed to reduce the effects of parameter variations and external disturbances. the desired speed tracking control performance can be preserved under wide operating range, and good speed load regulating performance. Some simulated results are provided to demonstrate the effectiveness of the Proposed controller.

Design of Adaptive Discrete Time Sliding-Mode Tracking Controller for a Hydraulic Proportional Control System Considering Nonlinear Friction (비선형 마찰을 고려한 유압비례제어 시스템의 적응 이산시간 슬라이딩모드 추적 제어기 설계)

  • Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.175-180
    • /
    • 2005
  • Incorrections between model and plant are parameter, system order uncertainties and modeling error due to disturbance like friction. Therefore to achieve a good tracking performance, adaptive discrete time sliding mode tracking controller is used under time-varying desired position. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law. Robustness is increased by using both a recursive least-square method and a sliding function-based nonlinear feedback. The effectiveness of the proposed control algorithm is proved by the results of simulation and experiment.

  • PDF

Direct Adaptive Fuzzy Sliding Mode Control for Under-actuated Uncertain Systems

  • Su, Shun-Feng;Hsueh, Yao-Chu;Tseng, Cio-Ping;Chen, Song-Shyong;Lin, Yu-San
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.240-250
    • /
    • 2015
  • The development of the control algorithms for under-actuated systems is important. Decoupled sliding mode control has been successfully employed to control under-actuated systems in a decoupling manner with the use of sliding mode control. However, in such a control scheme, the system functions must be known. If there are uncertainties in those functions, the control performance may not be satisfactory.In this paper, the direct adaptive fuzzy sliding mode control is employed to control a class of under-actuated uncertain systems which can be regarded as a combination of several subsystems with one same control input. By using the hierarchical sliding control approach, a sliding control law is derived so as to make every subsystem stabilized at the same time. But, since the system considered is assumed to be uncertain, the sliding control law cannot be readily facilitated. Therefore, in the study, based on Lyapunov stable theory a fuzzy compensator is proposed to approximate the uncertain part of the sliding control law. From those simulations, it can be concluded that the proposed compensator can indeed cope with system uncertainties. Besides, it can be found that the proposed compensator also provide good robustness properties.

Trajectory Control of a Hydraulic Excavator using Adaptive-Robust Control Method (적응-강인 제어기법을 이용한 유압 굴삭기의 궤적 제어)

  • 최종환;김용석;김승수;양순용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.186-194
    • /
    • 2003
  • This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system fir parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

  • PDF

Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance (모델 불확실성 및 외란을 갖는 이동 로봇들을 위한 적응 슬라이딩 모드 군집 제어 및 충돌 회피 기법)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1038-1043
    • /
    • 2010
  • In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.

Application of Sliding Mode fuzzy Control with Disturbance Prediction (외란 예측기가 포함된 슬라이딩 모드 퍼지 제어기의 응용)

  • 김상범;윤정방;구자인
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.365-370
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) algorithm is applied to design a controller for a benchmark problem on a wind- excited building. The structure is a 76-story concrete office tower with a height of 306 meters, hence the wind resistance characteristics are very important for the serviceability as well as the safety. A control system with an active tuned mass damper is assumed to be installed on the top floor. Since the structural acceleration is measured only at ,limited number of locations without measurement of the wind force, the structure of the conventional continuous sliding mode control may have the feed-back loop only. So, an adaptive least mean squares (LMS) filter is employed in the SMFC algorithm to generate a fictitious feed-forward loop. The adaptive LMS filter is designed based on the information of the stochastic characteristics of the wind velocity along the structure. A numerical study is carried out. and the performance of the present SMFC with the ,adaptive LMS filter is investigated in comparison with those of' other control, of algorithms such as linear quadratic Gaussian control, frequency domain optimal control, quadratic stability control, continuous sliding mode control, and H/sub ∞///sub μ/, control, which were reported by other researchers. The effectiveness of the adaptive LMS filter is also examined. The results indicate that the present algorithm is very efficient .

  • PDF

Sliding mode control with adaptive VSS observer

  • Chen, Yi-Feng;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1924-1929
    • /
    • 1991
  • The conventional sliding mode control and variable structure control (VSC) of nonlinear uncertain system are well known for their robust property and simplity of control law. However, the use of them is only pardonable on the assumption that the upper-bound of parameter variation or nonlinearity is known and that the complete information about state is available. Though the former has been solved with adaptive robust control theory recently, the latter seems not to be solved. In this paper, we try to solve this problem using the technique of VSS adaptive robust control theory. That is, we propose a VSS adaptive observer and a sliding mode control incorporated with this observer. We can prove the robust stability of the closed system applying the Lyapunov's second method.

  • PDF

Self Tuning Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems (불확실한 비선형 계통에 대한 자기 동조 적응 퍼지 슬라이딩 모드 제어)

  • Kim Dong-Sik;Park Gwi-Tae;Seo Sam-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.228-234
    • /
    • 2005
  • In this paper, we proposed a self tuning adaptive fuzzy sliding control algorithms using gadient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is automatically updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satisfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

Adaptive Sliding Mode Control Design for Mismatched Uncertain Systems (비정합 불확실성을 갖는 시스템을 위한 적응 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.39-43
    • /
    • 2010
  • This paper presents an LMI-based method to design an adaptive sliding mode controller for a class of uncertain systems. In terms of LMIs an existence condition of a sliding surface is derived. And an adaptive switching feedback control law to guarantee the asymptotic stability as well as to estimate the norm bound of disturbances is proposed. Finally, a numerical design example for controlling a overhead crane model is given to show the effectiveness of the proposed method.