• Title/Summary/Keyword: Adaptive power control

Search Result 661, Processing Time 0.027 seconds

Speed Control for a PMSM Servo System Using Model Reference Adaptive Control and an Extended State Observer

  • Li, Xiaodi;Li, Shihua
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.549-563
    • /
    • 2014
  • In this paper, the speed regulation problem of permanent synchronous motor (PMSM) systems under the vector control framework is studied. A model reference adaptive controller (MRAC) based on the Lyapunov stability theory is first designed. Since the standard MRAC method provides poor disturbance rejection performance in the case of strong disturbances, a composite control method which combines the MRAC method and the disturbance estimation method, called the MRAC+ESO method, is proposed. An extended state observer (ESO) is introduced to estimate the lumped disturbances. The obtained estimated value acts as a feedforward compensation term to the MRAC controller. A stability analysis of the composite control method is given. Simulation and experimental results are presented and compared to show the effectiveness of the proposed control method.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

Adaptive Backstepping Control of Induction Motors Using Neural Network (신경회로망을 이용한 유도전동기의 적응 백스테핑 제어)

  • Lee, Eun-Wook;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.452-455
    • /
    • 2003
  • Based on a field-oriented model of induction motor, adaptive backstepping approach using neural network(RBFN) is proposed for the control of induction motor in this paper. In order to achieve the speed regulation with the consideration of avoiding singularity and improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. rotor resistance uncertainty is compensated by adaptive backstepping and mechanical lumped uncertainty such as load torque disturbance, inertia moment, friction by RBFN. Simulation is provided to verify the effectiveness of the proposed approach.

  • PDF

Implementation of Multi-adaptive Filter for EOG Removal and Biofeedback Output Controller

  • Ahn, Bo-Sep;Kim, Pil-Un;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1650-1656
    • /
    • 2004
  • In this paper, a multi-adaptive filter is proposed for removing EOG and the 60 Hz power supply noise from EEG measured in the frontal lobe and the feedback output control method is implemented for biofeedback. The multi-adaptive filter has been implemented on the TMS320C6711 DSP system and the feedback output control algorithm has been realized by calculating the ratio of alpha wave on the TMS320C31 DSP system with real time performance. Through the experiment using the implemented multi-adaptive filter and feedback output controller, we demonstrate that the proposed adaptive filter effectively removes EOG and the 60 Hz power supply noise from the measured EEG in the frontal lobe and the feedback algorithm controls the level of stimulation by the ratio of the alpha wave.

  • PDF

Design of an Adaptive Speed Regulator for a Surface-Mounted Permanent Magnet Synchronous Motor (표면부착형 영구자석 동기전동기의 적응속도제어기 설계)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.425-431
    • /
    • 2010
  • This paper proposes a new adaptive speed controller for the speed control of a surface-permanent magnet synchronous motor. The proposed adaptive controller is very insensitive to model parameter and load torque variations since it does not require any accurate information on the motor parameter and load torque values. Moreover, the stability of the proposed control system is analytically proven. To verify the effectiveness of the proposed adaptive speed controller, simulation and experimental results are shown under motor parameter and load torque variations. It is clearly validated that the proposed speed regulator can precisely control the speed of permanent magnet synchronous motors.

DC-DC Boost Converter with Dead-Time Adaptive Control and Power Switching (Dead-Time 적응제어 기능과 Power Switching 기능을 갖는 DC-DC 부스트 변환기)

  • Lee, Joo-young;Yang, Min-jae;Kim, Doo-Hoi;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.361-364
    • /
    • 2013
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. A adaptive control method has been proposed to reduce these loses. In this method, however, occurrence of and overlapping time of two power transistors in CCM results in reduction of efficiency. In this paper, to overcome this problem a new adaptive control method in proposed, and a DC-DC boost converter with the proposed adaptive control and power switching has been designed in a 0.35um CMOS process. The designed converter outputs 3.3V from a input voltage of 2.5V. The switching frequency is 500kHz and the maximum power efficiency is 95.3% at a load current 150mA. The designed chip area is $1720um{\times}1280um$.

  • PDF

Adaptive DC-link Voltage Control for Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.764-777
    • /
    • 2014
  • This study analyzes the mathematical relationship between DC-link voltage and system parameters for shunt active power filters (APFs). Analysis and mathematical deduction are used to determine the required minimum DC-link voltage for APF. A novel adaptive DC-link voltage controller for the three-phase four-wire shunt APF is then proposed. In this controller, the DC-link voltage reference value will be maintained at the required minimum voltage level. Therefore, power consumption and switching loss will effectively decrease. The DC-link voltage can also adaptively yield different DC-link voltage levels based on different harmonic currents and grid voltage levels and thus avoid the effects of harmonic current and grid voltage fluctuation on compensation performance. Finally, representative simulation and experimental results in a three-phase four-wire center-split shunt APF are presented to verify the validity and effectiveness of the minimum DC-link voltage design and the proposed adaptive DC-link voltage controller.

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Manufacture and experiments of thermal process for comparative study of adaptive control (적응제어방식 성능비교를 위한 실험실용 프로세스의 제작 및 실험)

  • 주성준;공재섭;박용식;김영철;양홍석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.333-338
    • /
    • 1990
  • Most verification of improvements for adaptive control schemes are. dependent on computer simulations, but these computer simulations have much limitation, because (if complex actual conditions of system. This paper is concerned with the constructions of a thermal process system for experiments with various control schemes. This thermal process system is composed of a water tank, PC-XT, AD/DA converters power supply and thermal sensors. We estimate. the algorithms of pole-assignment adaptive control in the manifold disturbances and environments, changing system dynamics. The system equations for thermal press are included.

  • PDF