• Title/Summary/Keyword: Adaptive control system

Search Result 2,476, Processing Time 0.031 seconds

Manufacture and experiments of thermal process for comparative study of adaptive control (적응제어방식 성능비교를 위한 실험실용 프로세스의 제작 및 실험)

  • 주성준;공재섭;박용식;김영철;양홍석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.333-338
    • /
    • 1990
  • Most verification of improvements for adaptive control schemes are. dependent on computer simulations, but these computer simulations have much limitation, because (if complex actual conditions of system. This paper is concerned with the constructions of a thermal process system for experiments with various control schemes. This thermal process system is composed of a water tank, PC-XT, AD/DA converters power supply and thermal sensors. We estimate. the algorithms of pole-assignment adaptive control in the manifold disturbances and environments, changing system dynamics. The system equations for thermal press are included.

  • PDF

Balancing and Position Control of Inverted Pendulum System Using Hierarchical Adaptive Fuzzy Controller (계층적 적응 퍼지제어기법을 사용한 역진자시스템의 안정화 및 위치제어)

  • Kim, Yong-Tae;Lee, Hee-Jin;Kim, Dong-Yon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.164-167
    • /
    • 2004
  • In the paper is proposed a hierarchical adaptive fuzzy controller for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the hierarchical adaptive fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing, a forced disturbance generator which emulates heuristic control strategy, and a supervisory decision maker for the arbitration of two control objectives It is proved that all the signals in the overall system are bounded. Simulation results are given to verify the proposed adapt i ye fuzzy control method.

  • PDF

Autonomous Intelligent Cruise Control Using the Adaptive Fuzzy Control (퍼지 적응제어를 이용한 차량간격 제어 알고리즘에 관한 연구)

  • 장광수;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.175-186
    • /
    • 1996
  • In Advanced Vehicle Control System(AVCS), Autonomous Intelligent Cruise Control(AICC) is generally understood to be a system that can be achieved in the near future without the demanding infrastructure components and technoloties. AICC is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. This paper presents a fuzzy control algorithm to develop the AICC system. The control performance was studied information of vehicles using computer simulations. The most improtant aspects of the work reported here are the adoption of the fuzzy adaptive control law, and the use of filtering concept to reduce the slinky effects that may appear in a formation of vehicles equipped with AICC systems. The simulation results demonstrate the effectiveness of the fuzzy adaptive AICC system and its beneficial effects on traffic flow.

  • PDF

A Study of the Adaptive Control System (適應制御裝置에 關한 硏究)

  • Ha, Joo-Shik;Choi, Kyung-Sam;Kim, Seung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.19-31
    • /
    • 1979
  • Recently the adaptive control system, which keeps the control system always optimal by adjusting the control parameters automatically according to the variations of the plant parameters, have become very important in the field of control engineering. The adaptive control systems are usally composed of the plant identification, the decision of the optimal control parameters, and the adjustment of the control parameters. This paper deals with a method of the adaptive control system when PI or PID controller is used in the feed back control system. Its controlled object (the plant) is assumed to be described by the transfer function of $\frac{ke^{-LS}}{1+TS}$ where k, T and L are steady state gain, time constant and pure dead time respectively, and their values are variable in accordance with the change of environmental circumstance. It has been known that a pseudo-random binary signal is quite effective for the measurement of an impulse response of a plant. In adaptive control systems, however, the impulse response itself is not appropriate to determine the control parameters. In this paper, the authors propose a method to estimate directly the parameters of the plant k, T and L by means of the correlation technique using 3 level M-sequence signal as a test signal. The authors also propose a method to determine the optimal parameters of the PI or PID controller in the sense of minimizing the square integral of the control error in the feed back control system, and the values of the optimal parameters are computed numerically for various values of T and L, and the results are examined and compared with those of the conventional methods. Finally the above-mentioned two methods are combined and an algorithm to struct an adaptive control system is suggested. The experiments for the indicial responses by means of both the model of the temperature control system using SCR actuater and the analog simulations have shown good results as expected, and the effectiveness of the proposed method is verified. The M-sequence generator and the time delay circuit, which are manufactured for the experiments, are operated in quite a good condition.

  • PDF

Adaptive High Precision Control of Dynamic System Using Friction Compensation Schemes (마찰력 보상 기법을 이용한 동적 시스템의 고 정밀 적응제어)

  • Jeon, Buyng-Gyoon;Jeon, Gi-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.555-562
    • /
    • 2000
  • We propose an adaptive nonlinear control algorithm for compensation of the stick-slip friction in a dynamic system. The friction force and mass of the system are estimated and compensated by adaptive control law. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Laypunov stability theory, and its convergence is guaranteed under the bounded noise or torque disturbance. We verified the performance of the proposed algorithm by computer simulation on one-DOF mechanical system with friction.

  • PDF

Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors

  • Jung, Jin-Woo;Choi, Han Ho;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.904-911
    • /
    • 2012
  • This paper presents a fuzzy adaptive speed controller that guarantees a fast dynamic behavior and a precise trajectory tracking capability for surfaced-mounted permanent magnet synchronous motors (SPMSMs). The proposed fuzzy adaptive control strategy is simple and easy to implement. In addition, the proposed speed controller is very robust to system parameter and load torque variations because it does not require any accurate parameter values. The global stability of the proposed control system is analytically verified. To evaluate the proposed fuzzy adaptive speed controller, both simulation and experimental results are shown under motor parameter and load torque variations on a prototype SPMSM drive system.

ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM

  • Seok, Jinwuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.18-18
    • /
    • 2000
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network are provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shows that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller

  • PDF

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

An Adaptive Fuzzy Based Control applied to a Permanent Magnet Synchronous Motor under Parameter and Load Variations (ICCAS 2004)

  • Kwon, Chung-Jin;Kim, Sung-Joong;Won, Kyoung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1168-1172
    • /
    • 2004
  • This paper presents a speed controller based on an adaptive fuzzy algorithm for high performance permanent magnet synchronous motor (PMSM) drives under parameter and load variations. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by adaptive fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

Position Control of an Electro Hydraulic Actuator Using Adaptive Control Method (적응제어 기법을 이용한 전기-유압 액츄에이터의 위치제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • This paper deals with the issue of simple adaptive position control for a pump-controlled cylinder system. A fixed displacement pump is utilized instead of servo valve and its speed is controlled by AC motor. The whole control system is composed of a pair of interconnected subsystems, that is, a feedback control system and a feedforward control system. From experiments it is shown that position control using simple adaptive control can accomplish significant reduction in position tracking error comparing to a conventional PID control.

  • PDF