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1. INTRODUCTION In this paper, we propose the design method of the wavelet 
neural network (WNN) based controller using direct adaptive 
control method to deal with a stable intelligent control of chaotic 
systems. An intelligent control system that is an on-line trained 
WNN controller based on direct adaptive control method with 
adaptive learning rates is proposed to control chaotic systems 
whose mathematical models are not available. The adaptive 
learning rates are derived in the sense of discrete-type Lyapunov 
stability theorem, so that the convergence of the tracking error can 
be guaranteed in the closed-loop system. Finally, in order to 
evaluate the performance of our controller, we apply the proposed 
method to the continuous-time chaotic system.  
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In the last few decades, chaos has received increasing attention 

in various areas such as mathematics, engineering, physics, 
biology, and economics. One attractive topic concerning chaos is 
chaos control, which is needed to prevent a chaotic system from 
becoming unstable or being trapped in performance-degraded 
situations due to the unpredictability and irregularity of chaos.  

In 1990, Ott et al. proposed the so-called OGY method, by 
which the chaotic phenomenon of a dynamical system can be 
stabilized by a small perturbation of an accessible system 
parameter when the chaotic orbit approaches a periodic orbit near 
a saddle point. Since then, a number of successful control 
methods and techniques for controlling chaotic systems have been 
developed (see, for example, [1-4]). Among these chaos control 
techniques, the conventional control techniques such as feedback 
control, optimal control, and robust control were introduced to 
control the chaotic systems, and these kinds of techniques 
confirmed the effectiveness of chaos control [5,6]. But most of 
these techniques can be applied to control chaotic systems when 
the exact or at least the approximate mathematical model for 
chaotic systems is available. To overcome this shortage of them, 
the direct/indirect adaptive control methods can be used for 
controlling chaotic systems. For example, Park et al. presented a 
generalized predictive control method based on an ARMAX 
model for the control for discrete-time chaotic systems [7].  

 
2. DIRECT ADAPTIVE CONTROL SYSTEM 

 
The direct adaptive control system is shown in Fig. 1, in 

which the stable intelligent control system comprises a WNN 
controller and an on-line training mechanism with adaptive 
learning rates. 
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Fig. 1 Block diagram of the direct adaptive control system 

On the other hand, the intelligent control techniques based on 
neural networks and fuzzy logic are developed to control chaotic 
nonlinear systems [8]. Even though these intelligent control 
strategies have shown the effectiveness especially for unknown 
chaotic system, they have some drawbacks, which come from 
their own inherent characteristics. Therefore, the intelligent 
control techniques using the wavelet transform (WT), which has 
an excellent time-frequency analysis ability, are introduced [9]. 
Wavelets have been applied successfully to multi-scale analysis 
and synthesis, time-frequency signal analysis in signal processing, 
and function approximation. And, wavelets are well suited to 
approximate functions with local nonlinearities and fast variations 
because of their intrinsic properties of finite support and 
self-similarity. As a result, wavelet theory can have useful 
applications in nonlinear control system design.. 

 
2.1 Wavelet neural network controller 

The theory of wavelets was first proposed by Mallat in the 
field of multi-resolution analysis (MRA) [10]. A three-layer 
WNN shown in Fig. 2, which is comprised of an input node (the 
i layer), a wavelet node (the j layer), and an output node (the k 
layer), is adopted to implement the proposed WNN controller. 
The control problem is to design the WNN controller so that the 
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 plant output can track any desired output. To achieve this 
control objective, define the tracking error e pr yy −=

u

, in 

which  represents a desired output. The inputs of the WNN 

controller are  and e , where  is a time delay; the 
output of the WNN controller is the control input .  

ry
e )( 1−z 1−z

2.2 On-line training algorithm 
The central part of the training algorithm for a WNN 

controller concerns how to recursively obtain a gradient vector 
in which each element in the training algorithm is defined as 
the derivative of a cost function with respect to a parameter of 
the network. This is done by means of the chain rule, and the 
method is generally referred to as the back-propagation 
learning rule, because the gradient vector is calculated in the 
direction opposite to the flow of the output of each node. To 
describe the on-line training algorithm of the WNN controller 
using the supervised gradient descent method, first the cost 
function is defined as follows: 
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where,  is the output value of the plant and  is desired 

output value. 
py ry

The connection weights between input nodes and output 
nodes are updated according to the following equation: 

 Fig. 2 Configuration of the WNN 
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For every node i in the input layer, the input and output 

value are represented as: 
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A family of wavelets is constructed by translations and 
dilations performed on a single fixed function called the 
mother wavelet. For the wavelet layer, the input and output 
value of each node are represented as: The training of the connection weights between wavelet 

nodes and outputs nodes is calculated by:  
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where, ,  is the total number of wavelets. 

The translation factor m  and the dilation factor  are 

real numbers ( ). And, we choose the first derivative of 

a Gaussian function as a mother wavelet: 

wNj ,,2,1 L=

0>ijd

wN

ij ijd

where, cη  is the learning rate of the parameter . jc
 And, the training of the translation parameters is calculated 

by: 
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Furthermore, the single node k in the output layer is labeled 

as , which computes the overall output as the summation 
of all input signals. 
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where, mη  is the learning rate of the translation parameters of 
the mother wavelet. 

where,  is connection weight between input nodes and 

output nodes, and  is connection weight between wavelet 

nodes and output nodes. 

ia

jc Finally, the dilation parameters of the mother wavelet are 
updated as follows: 
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The error difference can be represented by [11] 
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where, dη  is the learning rate of the dilation parameters of 
the mother wavelet. 
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uyp ∂∂ , cannot be determined due to the nonlinear dynamics 

of the plant. Though the identifier can be implemented to 
calculate the Jacobian of the system, heavy computation effort 
is required. To overcome this problem and to increase the 
on-line learning rate of the weights, an approximation law is 
adopted as follows: 

 
Therefore, the error difference can be rewritten by 
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2.3 Convergence analysis 
Selection of the values for the learning rates has a 

significant effect on the network performance. In order to train 
the WNN effectively, adaptive learning rates, which guarantee 
the convergence of tracking error based on the analysis of a 
discrete-type Lyapunov function, are derived in this section. 
The convergence analyses are to derive specific learning rates 
for specific types of network parameters to assure 
convergence of the tracking error. 

 
If cη  is chosen as 2

max

2
max jcc P Φ== λλη , the term 

[ ] )()()(1 2 NPNPNe c
T

c− c δη

0

 in the above equation is less 

than 1. Therefore, the Lyapunov stability of V  and 0>
<∆V  is guaranteed. The tracking error will converge to 

zero as ∞→t . This completes the proof of the theorem.  

 
Theorem 1. Let 

cη  be the learning rate of the WNN 
weights between wavelet node and output node, and let  

be defined as 
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The convergence is guaranteed if 

n
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2
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max jcc P Φ== λλη , in which λ  is a positive constant 

gain. 

 ⋅
Theorem 2. Let mη  be the learning rate of the translation 

of the mother wavelet for the WNN, and let  be defined 

as 
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Then, a discrete-type Lyapunov function is selected as: 
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2
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The change in the Lyapunov function is obtained by  
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The error difference can also be represented by 
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The error difference can also be represented by 
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where ijd∆  represents a translation change of the mother 
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Therefore, the error difference can be rewritten by 
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If mη  is chosen as 

 
 

[ ] 2
minminmax

2
max

2

minmin

max
2

max

max

2
max

)|||(||1|||

||||
|1|||

−
−=





















 −
Φ==

ijijijjc

ijij

ijj
jmm

zdzc

zd
zc

P

η

λλη    (24) 

Then 
 

)()(
)(

1)(

)()(
)(

1)()1(

2

2

NPNP
Ne

Ne

NPNP
Ne

NeNe

d
T

dd

d
T

dd









−≤




















−=+

δη

δη
     (30) 

 
the term ( ) )()()(1 2 NPNPNe m
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equation is less then 1. Therefore, the Lyapunov stability of 
 and  is guaranteed. The tracking error 

will converge to zero as .  
0>V
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Theorem 3. Let dη  be the learning rate of the dilation of 

the mother wavelet for the WNN, and let  be defined as maxdP
)(Nmaxmax PP dNd = , where ijkd dP ∂3( ON ∂=)  and 

⋅  is the Euclidean norm in ℜ . The convergence is 

guaranteed if 

n

dη  is chosen as , in which 2
min
−|| ijm zη=dη

λ  is a positive constant gain and ⋅  is the absolute value. 

 
the term ( ) )()()(1 2 NPNPNe d

T
dd δη−

0

 in the above 

equation is less then 1. Therefore, the Lyapunov stability of 
 and 0>V <∆V

∞→t
 is guaranteed. The tracking error 

will converge to zero as .   
Proof 3. Since  
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3. SIMULATION RESULTS Theorem 4. Let aη  be the learning rate of the dilation of 

the mother wavelet for the WNN, and let  be defined as maxaP
)(Nmaxmax PP aNa = , where ika aO ∂3(N ∂=)P  and 

⋅  is the Euclidean norm in ℜ . The convergence is 

guaranteed if 

n

aη  is chosen as 2

maxixληa = , in which λ  

is a positive constant gain and ⋅  is the absolute value. 

In this section, we present some simulation results to 
validate the control performance of proposed controller for the 
continuous-time chaotic system. We consider the Duffing 
system as the controlled chaotic system. 

The state equation of the Duffing system is as follows:  
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Proof 4. Since  
 where, the parameter set is as follows: 
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  The control objective for Duffing system is to follow the 

periodic solution of the Duffing system. In tracking the 
Duffing system, we define the initial system state as (1,0) and 
the reference signal as the periodic solution in case of q=2.3 of 
Eqn. (39). 

Thus 
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The parameters used in this simulation are shown in Table 

1. 
The error difference can also be represented by 
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Number of the input 2 
Number of the wavelet function 14 
Number of the output 1 
Sampling time 0.01 
A positive constant gain ( λ ) 0.1 

 
where  represents a translation change of the mother 
wavelet, and  
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In the simulation, in order to evaluate the performance of 

the proposed controller, we compare the results of the 
proposed stable intelligent control system with those of the 
WNN controller with fixed learning rates (0.0001). 

 
Therefore, the error difference can be rewritten by 

Figures 3 and 4 show the tracking control results of state x 
and y for Duffing system using the direct adaptive control 
technique based on the WNN controller with fixed learning 
rate [12]. Also, the tracking control results of Duffing system 
using the proposed stable intelligent control system are shown 
in Figs. 5 and 6. And, Table 2 shows the tracking control 
results of the proposed controller. 
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Then From the results obtained the above, we can see that the 

proposed stable intelligent control system has the better 
control performance, and that it is faster, more effective and 
stable, as compared with the intelligent control system based 
on the WNN controller with fixed learning rate. 

 

)()(
)(

1)(

)()(
)(

1)()1(

2

2

NPNP
Ne

Ne

NPNP
Ne

NeNe

a
T

aa

a
T

aa









−≤




















−=+

δη

δη
  (37) 

Consequently, selection of values for the learning rates has 
a significant effect on the network performance. If small 
values are given for the learning rates, convergence will be 
assured at a low speed. On the other hand, if large values are 
given for the learning rates, the system may become unstable.   

If aη  is chosen as  
Table 2 Tracking control results for Duffing system 

 State x 0.0332 WNN controller with adaptive 
learning rates [ours] State y 0.1386 

State x 0.1518 WNN controller with fixed 
learning rates [12] State y 0.5483 

2

max
2
max iaa xP λλη ==          (38) 

 

the term ( ) )()()(1 2 NPNPNe a
T

aa δη−

0> 0

 in the 

above equation is less then 1. Therefore, the Lyapunov 
stability of V  and <∆V

∞→t
 is guaranteed. The 

tracking error will converge to zero as .  

 
4. CONCLUSIONS 

 
In this paper, we have proposed the design method of the 
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wavelet neural network (WNN) based controller using direct 
adaptive control method to deal with a stable intelligent 
control of chaotic systems whose mathematical models are not 
available. In our method, the intelligent control system is an 
on-line trained WNN controller with adaptive learning rates. 
The adaptive learning rates are derived in the sense of 
discrete-type Lyapunov stability theorem, so that the 
convergence of the tracking error can be guaranteed in the 
closed-loop system. The major merits of our control system 
are that the strict constrained conditions and prior knowledge 
of the controlled plant are not necessary in the whole design 
process, and convergence of the tracking error in the control 
system can be guaranteed. From the simulation results, we can 
see that the proposed stable intelligent control system has the 
better control performance, and that it is faster, more effective 
and stable, as compared with the intelligent control system 
based on the WNN controller with fixed learning rate. 
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Fig. 3 Track control result of Duffing system (state x) using 
the WNN controller with fixed learning rate (0.0001) 
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Fig. 4 Track control result of Duffing system (state y) using 
the WNN controller with fixed learning rate (0.0001) 
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