• 제목/요약/키워드: Adaptive control system

Search Result 2,476, Processing Time 0.033 seconds

Attitude control of a hydrofoil type catamaran using decentralized adaptive control technique (비집중 적응제어기법을 이용한 복합지지 초고선의 자세제어)

  • Kim, Byung-Yeon;Lee, Gyung-Joong;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1233-1236
    • /
    • 1996
  • Attitude Control System for a Hydrofoil type catamaran in wave is designed using a Decentralized Adaptive Control technique which is announced already by authors. This automatic attitude control system is designed for its good seaworthiness and for robustness on the variation of center of gravity. The performance is compared with a PID controller and the results show that the Decentralized Adaptive controller has better stability on the variation of the center of gravity.

  • PDF

Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator (수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어)

  • 여준구
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

Intelligent Control of Robot Manipulator Using DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 로봇 매니퓰레이터의 지능제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-226
    • /
    • 2003
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory fir the adaptive control of linear systems, there exists relatively little general theory fir the adaptive control of nonlinear systems. Adaptive control technique is essential fir providing a stable and robust performance fir application of robot control. The proposed neuro control algorithm is one of teaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique f3r real-time control of robot system using DSPs.

  • PDF

Robust Control of Robot Manipulator Based-on DSPs(TMS320C50) (DSPs(TMS320C50)을 이용한 로봇 매니퓰레이터의 견실제어)

  • 이우송;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.193-200
    • /
    • 2004
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

A study on the microcomputer-based adaptive control system of a steam generator (적응제어알고리즘을 이용한 원자력발전소용 증기발생기 수위제어 시스템에 관한 연구)

  • 배병환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.658-663
    • /
    • 1987
  • The new controller developed here, which is the facility with only one measurement, is a new concept for the level controller of the existing nuclear steam generator. A MACS (Microcomputer-based Adaptive Control System of a Steam Generator) is quite practical and efficient, and has also simple structure and higher flexibility in the installment for actual plant. A key ingredient of this system is adaptive regulator which can calculate adaptive, optimal valve position in response to changes in the dynamics of the process and the disturbances. In spite of many difficulties in the steam generator water level control at low power, it can be concluded from the experimental and simulation results, that the MACS can provide optimal, robust steam generator level control from zero to full power. The amount of the control input effort can be reduced by adjusting the weighting factor. However, the steady state water level errors are generated. To avoid the steady errors, the different adaptive algorithm should be investigated in the future. The 3 second sampling time is acceptable for this system. However, action should be taken to shorten the sampling time for better digital control.

  • PDF

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).