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A Direct Adaptive Fuzzy Control of Nonlinear Systems with
Application to Robot Manipulator Tracking Control

Young-Wan Cho, Ki-Sung Seo, and Hee-Jin Lee

Abstract: In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC)
for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model.
The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so
that it provides asymptotic tracking of the reference signal for the systems with uncertain or
slowly time-varying parameters. The developed control law and adaptive law guarantee the
boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state
of the reference model asymptotically with time for any bounded reference input signal. To verify
the validity and effectiveness of the MRAFC scheme, the suggested analysis and design
techniques are applied to the tracking control of robot manipulator and simulation studies are
carried out. In the control design, the MRAFC is combined with feedforward PD control to make
the actual joint trajectories of the robot manipulator with system uncertainties track the desired
reference joint position trajectories asymptotically stably.

Keywords: Adaptive fuzzy control, model reference adaptive control, nonlinear system, robot

manipulator, Takagi-Sugeno model, tracking control.

1. INTRODUCTION

In some control tasks, such as those in robot
manipulation, the systems to be controlled have
constant or slowly-time varying uncertain parameters.
Unless such parameter uncertainty is gradually
reduced on-line by an appropriate adaptation or
estimation mechanism, it may cause inaccuracy or
instability for the control systems. In many other tasks,
such as those in power systems, the system dynamics
may have well known dynamics at the beginning, but
experience unpredictable parameter variations as the
control operation goes on. Without continuous
redesign of the controller, the initially appropriate
controller design may not be able to control the
changing plant well [1-4]. The problem of adaptation
of dynamical systems having parameter uncertainty
has attracted a lot of research efforts in all times. In
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particular, for nonlinear systems, several approaches
have been proposed to deal with this important
problem [5-7].

On the other hands, as a model free design method,
fuzzy logic systems have been successfully applied to
control complex or mathematically poorly
understandable systems. However, the fuzzy control
has not been regarded as a rigorous science due to the
lack of guaranteed global stability and acceptable
performance. To overcome these drawbacks, during
the last decade, there has been growing interest in
systematic analysis and design of fuzzy control
systems such as stability and robustness [8-12]. One
of the motivations in this research is the success
developed in [9] where the authors provided a
sufficient condition for the asymptotic stability of
fuzzy control system based on Takagi-Sugeno (TS)
model [8] in the sense of Lyapunov through the
existence of a common Lyapunov function for all
subsystems.

In recent years, in order to deal with the
uncertainties of nonlinear systems in the fuzzy control
system literature, a lot of effort has been put to
adaptive fuzzy control system such as neural network
based approaches [13-14], and the TS model based
approaches [15-17]. The main advantages of adaptive
fuzzy control over nonadaptive fuzzy control are: (1)
better performance is usually achieved because the
adaptive fuzzy controller can adjust itself to the
changing environment, and (2) less information about
the plant is required because the adaptation law can
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help to learn the dynamics of the plant during real-
time operation. However, these approaches still have
some problems. The adaptive control scheme
proposed by Wang [I13] guarantees the uniform

boundedness of all signals of the control system but it

is applicable only to single-input single-output system.

In many applications, the structure of the model of
the plant may be known, but its parameters may be
unknown and/or change with time. Recently, the
concept of incorporating fuzzy logic control into the
model reference adaptive control has grown into an
interesting research topic [18-20]. In this paper, a
direct model reference adaptive fuzzy control
(MRAFC) scheme is proposed to provide asymptotic
tracking of a reference signal for the systems having
uncertain or slowly time-varying parameters. This
paper presents the design and analysis of on-line
parameter adaptation for the plant model whose
structure is represented by the Takagi-Sugeno model.
The adaptation law adjusts the controller parameters
on-line so that the plant output tracks the reference
model output. The developed control law and adaptive
law guarantee the boundedness of all signals in the
closed-loop system. In addition, the plant state tracks
the state of the reference model asymptotically with
time for any bounded reference input signal. Tracking
control of robotic manipulators is an important
research topic as many robots are widely used in
industry to perform the task of path tracking at high
speed with the requirement of high accuracy. The
proposed adaptive fuzzy control scheme is applied to
tracking control of robot manipulator to verify the
validity and effectiveness of the control scheme.

2. TAKAGI-SUGENO MODEL BASED
FUZZY CONTROL

In the control system design, it is important and
significant to select an appropriate model representing
a real system. As an expression model of a real plant,
we use the fuzzy implications and the fuzzy reasoning
method suggested by Takagi and Sugeno [8]. The
Takagi-Sugeno (TS) fuzzy model is widely accepted
as a powerful tool for design and analysis of fuzzy
control systems and applications of the TS models to
various kinds of nonlinear systems can be found. The
Takagi-Sugeno fuzzy model uses smooth aggregation
of local linear mathematical models to represent
dynamical systems, which are useful because they can
provide description of a physical phenomenon or a
process, and can be well suited to analysis, prediction
and design of dynamic control systems.

Consider the continuous-time nonlinear system
described by the Takagi-Sugeno fuzzy model. The
i th rule of continuous-time TS model is of the
following form:

R': If x,(t) is M{ and - and x,(t) is M

. (D
then x(f) = 4;x(f) + Bu(r),

where R! (i=1,2,---,) denotes the ith implication,
x(t) =

[0+, %, (O], u(@) =[wy ()., u, O] . Given a
pair of input the final output of the fuzzy system is
inferred as follows:

! is the number of fuzzy implications,

!
> o, (){Ax(1) + Bu(t)}
x(f)=H— , @
Z w;(1)
i=1

n

where o, (1) =HM; (x;(1)) and M;(x;(r) is the
=1

grade of membership of x;(¢) in M}.

In order to design fuzzy controllers to stabilize
fuzzy system (2), we utilize the concept of parallel
distributed compensation (PDC) [10]. The idea is to
design compensators for each subsystem of the fuzzy
model. Since the PDC controller shares the same
fuzzy sets with fuzzy model (2) to construct its
premise part, the resulting overall controller is a fuzzy
blending of each individual subsystem controller of
the following form:

R: If x(t) is Ml' and -+ and x,(t) is M;l

3)
then u(t) =—-K;x(?).

Given a state feedback x(7), the final output of the
fuzzy PDC controller (3) is inferred as follows:

I
> 0, (DKx(1)
u(@)=-=—-—. 4

Z w; (1)
i=l

By substituting the controller (4) into the model (2),
we can construct the closed-loop fuzzy control system
as following:

[ 1
Y. Y @O0, ()4 — BK Ix(t)
x() = SR 1 . (5)
Zzwi(t)a)j(t)
i=1 j=1

A sufficient condition for ensuring the stability of the
closed-loop fuzzy system (5) is given in Theorem 1,
which is derived in [10].

Theorem 1: The equilibrium of a fuzzy control
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system (5) is asymptotically stable in the large if there
exists a common positive definite matrix P such that

Gy P+PG] =—Q (6)

for all i,j=1,2,---,{, where G,~j =4; —B,-Kj and
Q;: is a positive definite matrix.

The design problem of TS model based fuzzy
control is to select K;(j=12,-,]) such that

stability conditions (6) in Theorem 1 are satisfied. It
has long been recognized that there is lack of
systematic procedures to find a common positive
definite matrix P to check the stability of fuzzy
control system. Most of the time, a trial-and-error type
of procedure has been used. In [11], the common P
problem was solved efficiently via convex
optimization techniques for LMI's (Linear Matrix
Inequality). However, the fuzzy control (4) does not
guarantee the stability of system in the presence of
parameter uncertainties or variations. Moreover, the
design of control parameters is not possible for the
systems whose parameters are unknown. To overcome
these drawbacks, this paper proposes an adaptive
control scheme for the TS fuzzy systems whose
parameters are unknown or time varying,

3. DIRECT MODEL REFERENCE
ADAPTIVE FUZZY CONTROL

In this section, a direct model reference adaptive
fuzzy control (MRAFC) scheme for TS system is
developed. Consider again the nonlinear system
represented by the TS model (1) or (2), where the

state x € R" is available for measurement, 4; € R™"
and B; e R (i=1,2,---,]) are unknown constant
matrices and (4;,B;) are controllable. The control

objective is to choose the input vector ue R? such
that all signals in the closed-loop plant are bounded
and the plant state x follows the state x,, € R” of
the reference model specified by the following system

xm(t) =

I 1
22 O (xO)pt; (X {(Ay) X,y () + (B, ¥} -

i=1 j=1 7

B

[ ]
D o, (x@O)p; (x(?)
i=1 j=1

where (Am),-jeR"X" (i,j=1,2,---,l) satisfy the

stability condition of fuzzy system given in Theorem
1, ie., there exists a common symmetric positive

definite matrix P=P! >0 such that (4, )iJT-P+

P(Am)lj <_Q,'j for all Qz] =Qg >0, (Bm)y e R™4,

and reR? is a bounded reference input vector. The
reference model and input r are chosen so that x,,(¢)

represents a desired trajectory that x has to follow.

3.1. Control law
If the matrices 4;, B; were known, we could

apply the control law

l
2 1 (O K x(0) + Lyr ()}
(=" , )
> w4 (x()
Jj=1

where 1;(x(#)) = w;(x(r)), and obtain the closed-

loop control system
x(r) =
! 1
33 o (x(O)p; (XON (A — BiK )x(1) + B.Lyw(1)}

i=1 j=1

I 1
DY o (x(0)p (x(2))

i=t j=1

®)

. * *
Hence, if K; =R?" and L; =R?? are chosen to

satisfy the algebraic equations
A -BK;=(4,);, BL;=(B,); (10

then the transfer matrix of the closed-loop system is
the same as that of the reference model and

x(f) > x,,(t) exponentially fast for any bounded
reference input signal r(f). We should note that

given the matrices 4;, B;, (4,,);and (B,,),;;,no K;

and Lj- may exist to satisfy the matching condition

(10) indicating that the control law (8) may not have
enough structural flexibility to meet the control
objective. In some cases, if the structure of 4, and

B.

1

is known, (4,); and (B,); may be designed
so that (10) has a solution for K; and L;.

Let us assume that K; and Lj- in (10) exist, i.e.,

there is sufficient structural flexibility to meet the
control objective, and propose the control law

]
D u; (XOM-K ;OX(0) + L (D)}
u()== l , (D
D u(x(1))

Jj=1
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where K ;(f) and L;(t) are the estimates of K;
and L?, respectively, to be generated by an

appropriate adaptive law.

3.2. Adaptive law
By adding and subtracting the desired input term,

u(r) = Zﬂ, (O {-B{(Kx() - L, r(t))}/Zﬂ, (x(®))
j=1
to the plant equation (2) and using (10), we obtain

! 1

2. Z @ (X)) (XN 4y, )
= i x(t)
Zzwi(X(t))u (x()

i=1 j=1

x(¢) =

/

I
D o (x(0)p; (X())(B, )y
i=lj

=1 j=1

— r(7)
D> (X)) (x(1))

i=l j=1
i

)
22 o (x(E); (X(O)B; (K 7x(t) — Lyr(r) + u(r))
i=1j

=1 j=I

! 1
D> o (x()); (x(1))

i=1 j=1
(12)
Furthermore, by adding and subtracting the estimated

! /

input term multiplied by Y @,(x(1))B;/ Y. a;(x(1)),
i=1 i=1

that is,

Za) (x(1))B; Zu, (O K ; ()x(1)— L (O)r (1)}

1

Zwi(xa))
i=1

—u(?)
34y 540)
J=

to the reference model (7), we obtain

[
2. 2 (X (O Ay,
2, () =17 %,(0)

Z Z @, (X() 1 (x(1))

i=1 j=1

i

!
X Y o xO)p (xONB,,);
. i=1 j=I1 r(t)

I 1
D o (x()); (x(1))
i=1

= ]:1

11
D2 @ (xO)p; (XO)B,(K ; (1)%(1) = L (D) (t) + u(r))

=] =1
+=4

1
2. T (0D 0)
(13)

By using the reference model (13), we can express
(12) in terms of the tracking error defined as

e=X-X,, L€,

/
D > o (xO) (XN (A )

&(t) = i=l j=1

I 1
ZZ w; (x(£)) p;(x(1))
i=1 j=1

e(?)

11 _
D o (x(O)u; (X(O)B(—K ;(0)x(6) + L;(D)r(1))

i=1 j=1
+—7

b

[
ZZ @, (x(D) p; (x(1))

(14)
and L;(t)=L;(1)-L;.

In the dynamic equation (14) of tracking error, B,

where K;(1)=K;(1)-K;

are unknown. We assume that L; are either positive

definite or negative definite and define F;l =

L? sgn(/;), where /; =1 if Lj- is positive definite

and [;=-1 if L, is negative definite. Then

B; =(B,,); Ljfl and (14) becomes

/
Z o (x(O) (XN Ay

é(r) =

!

>0
L e(t)
>

]
Z @, (X)) (x(1))

1 1 - ~
DY o (xO);(XO)B,); L (=K, (0Ox() + L; (0)r(1))

i=1 j=1
+—

I 1
> > o (xO))u; (x(t))

i=t j=1

(15)
Now, by using the tracking error dynamics (15), we
derive the adaptive law for updating the desired

and Lj so that the closed-

loop system (12) follows the reference model (7). We
assume that the adaptive law has the general structure

*
control parameters K;

K j(6) = F;(x(1), %, (1), (1), 7(1)),

. (16)
Ly (1) = G (x(1), Xy (0, (D), (D)),
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where F; and G; (j=L---,) are functions of

known signals that are to be chosen so that the
equilibrium
* *

K.,.=K;, L,=L;, e

je=Kj» Lje=Lj, € =0 a7

of dynamic equations (15) and (16) has some desired
stability properties.

We propose the following Lyapunov function
candidate

]
- T N_ T o T > 7T 4
VieK; L)=e Pe+Z‘irr(Kj T,K;+L;T;L)),
]:
(18)

where P=PY >0 is a common positive definite

matrix of the Lyapunov equations (4, ); P+P(A4, )y

<-Q, for all Q;=0f >0 (i,j=12,,
existence is guaranteed by the stability assumption for

A4,, and Theorem 1. From here, for the convenience

of notation, we omit the time notation. Then, after
some straightforward mathematical manipulations, we

), whose

obtain the time derivative ¥ of ¥ along the
trajectory of (15) and (16) as

11
Z Z @;(X) 1 (X)0y
i=1 j=

V=—e e

=1
I
> o (x)p;(x)

j=

DM~
i
i

i

>

MN

o, ()u; (KT ;(B,,);" sen(l;)
1ol ELA — Pex”
22> oy (X)(x)
i=1 j=1
[ T -
+2 K, T K,
j=1
I 1 g T
ZZw-(x)u,-(x)Lj T ;(B,); sendl;)
2 L — Per!
> @ (0u;(x)
i=1 j=1
l ~ ~
+> LT L ¢.(19)
Jj=1

In the last two terms of (19), if we let

[ .
.
2K/ TK; =
j=l
[

i

3 o (x)u; KT (B,); senll;)

i=1 j=1
1 1
> > o () (x)

i=1 j=1

(20a)

Pex! R

~ T -~ _

M~

~.
I
—_

(20b)
Per! R

I 1
3> 0,0, (X)L T (B,,); sen(l;)

_i=ly=l
[
22 @ (0p;(x)

i=1 j=1

we canmake ¥ to be negative, i.e.,

I 1
Z Z @; (X),Uj (X)Qy
y =l ZLiZ e<0. 1)

I 1
ZZ 0 (X1 (%)

Hence, the obvious choice for adaptive law to make
V negative is

K, =K;(0=
]
> @ ()(B,y); 29
= lﬂj(X) sen(l;)PexT. (222)
Z w;(x) z Hj (x)
i=1 J=1
Li=L;n=
I
Y o, (x(B); 2
_Ji=l l lﬂj (x) Sgn(lj)PerT (226)
Yox || X
i=1 j=1

3.3 Implementation and analysis

All the quantities in the right hand sides of (22a)
and (22b) are known or available for measurement.
Therefore, the adaptive law (22) for direct model
reference adaptive control of TS fuzzy system can be
implemented. Fig. 1 illustrates the configuration of the
direct MRAFC system. The reference model is used to
specify the ideal response that the fuzzy control
system should follow. The plant is assumed to contain
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R :
Pl SEwa A, B0 x, . e
%, = 2 (T
ZEWH,
+
Reference Model
—d
r N :Zﬂl(—K}x‘FLjr) u i_Zw,(A,x«thu) X
v Z/"'J i Z ¥
ﬁuzzy Controller Plant Model

Fig. 1. The configuration of direct MRAFC.

unknown parameters, but its structure is known. The
fuzzy controller is constructed from fuzzy systems
whose parameters are adjustable. The adaptation law
adjusts the control parameters K(¢#) and L(z) on-
line such that the state x of plant tracks the state
x,, of reference model, which allows plant output to
follow the reference model output.

Using arguments previously discussed, we establish
the following theorem which shows the properties of
the MRAFC derived in this research. The control law
(11) together with the adaptive law (22) guarantees
boundedness for all signals in the closed-loop system.
In addition, the plant state x tracks the state of the
reference model x,, asymptotically with time for

any bounded reference input signal r.

‘Theorem 2 (Stability of the direct MRAFC):
Consider the plant model (2) and the reference model
(7) with the control law (11) and adaptive law (22).
Assume that the input r and the state x, of the
reference model are uniformly bounded. Then the

control law (11) and the adaptive law (22) guarantee
that

(i) K@), L(t), e(r) are bounded.
(ii) e(r) >0 as ¢t — .

Proof: From (18) and (21), it directly follows that
V' is a Lyapunov function for the system (15) and
(16), which implies that the equilibrium given by (17)
is uniformly stable, which, in turn, implies that the
trajectories K (7), L(¢), e(t) are bounded for all
t>0. Because e=x-x,, and x,, € %, we have

that x € %o. From (11) and r € %, we also have that
uE %,; therefore, all signals in the closed-loop
system are bounded. Now, let us show that ec %.
From (18) and (21), we conclude that because V is

bounded from below and is nonincreasing with time,
it has a limit, i.e.,

lim ¥ (e(t), K ; (1), L;(#))=V,, <. (23)

>0

From (21) and (23), it follows that

i
Z @;(X) 4 (X)Qy
EeT i’jzll edr

> o (x)p;(x) (24)

i,j=1

=—J:Vdr:V0—Vw,

where ¥, =V (e(0), K;(0), L;(0)).

On the other hand, from 0<w,(x)<1, 0<(x)<I,
2

and Anin (O el < €7 Qe < A (Oy)e

2
, we have

!
Z @;(x)u 3 (X)sz
Cin (O Vi e " | 27 e
3 6,0 (x)

i,j=1

< (ﬂ’max (Qz] ))max "el

25)

2
s

where (ﬂ‘mm (sz ))min =min {ﬂmin (Ql 1 JREN ﬂ‘min (Qll s

\ (/lmax (Qz] ))max = min{ﬂ‘max (Ql 1 ) 9ﬂ‘max (Qll)} .

After inserting (25) into (24), and straightforward
manipulation, we have

(ﬂ-mmo(_QJ)

min

(Anaxo(_Q;)o)

< ["lefdr <
0

max

which implies that e e .%. Because e, K It Lj, re

Fo, it follows from (15) that e € %, which, together
with e e %, implies that e(f) >0 as ¢ — . 0

4. TRACKING CONTROL OF A 2-LINK
ROBOT MANIPULATOR

In this section, the validity and effectiveness of the
proposed MRAFC scheme are examined through the
simulation of tracking control for two-link robot
manipulator shown in Fig. 2.

The objective of the adaptive tracking controi
design of a robot manipulator is to derive an adaptive
control law for the actuator torque u to make the
actual trajectories of the robot manipulator with
system uncertainties to track the given desired
trajectories q,(f) of the joint position and velocity

with desired accuracy and stability. In the simulation,
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Fig. 2. An articulated 2-link robot manipulator.

we examine the effects of parametric variation caused
by some internal uncertainties on behaviors of the
closed-loop control system with the nonadaptive PD
controller, adaptive sliding mode controller, and the
proposed TS model based adaptive fuzzy control
scheme, respectively.

4.1. Design of direct adaptive fuzzy tracking control
system

In this section, we derive the Takagi-Sugeno model
representation for the equation of motion of the two-
link robot manipulator, and describe the design of
direct adaptive fuzzy controller which is composed of
adaptive  fuzzy  stabilizer incorporated with
feedforward PD controller. Consider the two-link
robot manipulator of Fig. 2, whose dynamics can be
written explicitly as

{Mn MleI{él:|+|:_h42 -h(q "‘(iz)}[‘?l}:[ﬁ}
My My |G, hg, 0 Gl |n]
(26)
where
My, =a +2a5cosq, +2a,sing,,
My =My =a, +azcosq, +a,sing,,

My, =a;, h=2a3sing, —a,cosq,

with aq = Il +m11612 +12 +m21c22 +m2112, ay =12 +
mzlczz, ay = mzlllcz COoS 52, ag = mzlllcz sin 52.

In order to apply the suggested direct MRAFC, we
must have a fuzzy model which represents the

behavior of the manipulator. By rewriting the
equations of motion (26) as

[?}=—414N[?}+Af*[ﬁ}, @7)
M M —h I h . .
where M:[ 1 12j| and Nz{ ?2 (‘11+42)},
20 My hd, 0

M! M M}
9
z 0 z
2 2
M, M;
q
27 0 27 !
M; M;
g
27 0 2r g

Fig. 3. Membership functions of ¢,, 4;, 4.

we have the following nonlinear state equations:

Xzf(x)+g(x)u, (28)
o 00
iy
where f(x)= .- g(x)={0 0|, u=
_M—IN{C.]I} M
92

4 .. 1 .
, and x=[ql 92 4 qz] . Then, by applying
2

the Lyapunov linearization method at operating points
X =X;, we obtain the affine linear model description
for the two-link robot manipulator (26) around the

operating point as following:
X=4, x+B, utf,, 29

where 4, and B, denote the Jacobian matrices of
f(x) and g(x) evaluated at (x;,u;), and f, =
£(x;) — Ay X;.

The whole state space formed by state vector of the
original nonlinear equations (28) is partitioned into
3x2x2 different fuzzy subspaces whose center is
located at the center of corresponding membership
functions shown in Fig. 3.

To apply the proposed adaptive fuzzy control
scheme, the reference model for the plant state x to
follow should be specified. In this simulation, the

closed-loop eigenvalues for each subsystem are
chosen to be the same, which in turn make the
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reference model for each fuzzy subspace to be the
same and linear one as following:

0 0 1 0 0 0
) 0 0 0 .\ 0 0 30)
X = X r.
"ol-425 0 -4 0™ |0 1

0 -075 0 -5 1 0

The feedback stabilizer is combined with PD
controller to generate the command for tracking the
given trajectory.

ll=llf +r

r=-Kpq-Kpq

The state feedback stabilizer u s 1s the PDC fuzzy

controller combined with the compensator to
eliminate the biased terms of the linearized plant
models (29). The PDC controller shares the same
fuzzy sets (Fig. 3) with fuzzy model to construct its
premise part. That is, the fuzzy stabilizer is of the
following form:

R':If qy is M{ and ¢ is M’ and g, is M}
R @1
then w,=-K;[q q; 4 ¢2] +u,.

The feedback control gain K, of each stabilizer is
updated by adaptive law so that the closed-loop plant
follows the reference model (30). The initial values of
K; are designed from the nominal parameters of the
plant model (Table 1). In this simulation, we design
the initial parameters of the K; so that the closed-
loop plant including the feedback stabilizer has the
same eigenvalues as reference model, and input-
output of the closed-loop plant are decoupled.

Now by using (22), we derive the adaptive law for
updating the elements of K, so that the closed-loop

plant controlled by adaptive fuzzy feedback stabilizer
follows the reference model.

K0 =

Zﬂj(x)
=

sen(l;)B,," Pex’, (32)

0010
where B,,f:{o 0 0 J and

.13 0 012 0
0 117 0 0.07
012 0 015 0 |
0 007 0 0.11

Table 1. The parametric variations of simulated robot
manipulator.

Variation of robot
manipulator parameters

m=1 my=2,
=1, 6,=30°

1, =012, I,=025,
l1=05 1,=06
m =3, m, =6,
=1 6,=30°
1,=0.12, I, =025,
l1=05, 1,=06
m =6, m =12,

L =1 6,=30°
1,=012, I,=025,

lcl = 0.5, Icl =0.6

0<t<2

Casel

2<t<4

Case2

Reference Model |

Robot
Manipolator

Stabilizer

Fig. 4. The configuration of model reference adaptive
fuzzy tracking control.

The configuration of overall control scheme for
tracking control of robot manipulator using the
proposed MRAFC is illustrated in Fig. 4. The fuzzy
stabilizer incorporated with the adaptive law in the
inner control loop plays the role to make robot
manipulator to follow the reference model. The
reference model is controlled by the outer loop control
to perform the desired control activity.

The well established linear and nonlinear control
techniques such as PID, sliding mode control,
feedback linearization control will be helpful to
design the outer loop control. Since adaptation
strategy is the main issue of this paper, PID control is
adopted to the outer loop control for the purpose of
simplicity.

4.2. Simulation results and discussions
The adaptive fuzzy stabilizer combined with
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feedforward PD control is simulated for the tracking
control of the robot manipulator, and the results are
discussed in this section. In this simulation, from
comparative viewpoint, three control schemes were
simulated on the tracking control of the two-link robot
manipulator shown in Fig. 2. The first one is a
conventional PD controller; the second one is the
adaptive sliding mode controller [4]; and the third is
the direct model reference adaptive control scheme
designed in the previous section.

4.2.1 Comparative controllers

The conventional proportional-derivative (PD)
controller used as the first comparative control
scheme for achieving the tracking control of the
manipulator has the following general form:

t=—Kpi - Kpd, (33)

where the gain matrices Kp and K, are chosen as
Kp = 100X and Kp = 20K,. The second comparative

Linear path tracking

T

b Desired
. | ——pPD

— — — — 4 — { ~———— Adaptive Sliding }

0.8

04

0.2

| | 1
| | |
| | |
[ 1 I I
-1.5 -1 0.5 0 0.5 1 15 2

(a) Linear path-Cartesian space tracking.

Linear path tracking: Joint angle space
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(c) Linear path-Joint space tracking.

controller is a robust adaptive control which uses a
sliding mode controller as a robust controller and has
an estimation law for the unknown or time-varying
parameters. The adaptive sliding mode controller
takes the control law to be

which includes the term Ya in addition to a simple
PD term Kps, where s= §+A§. The parameter
estimates a4 is updated by the adaptive law

a=-TYs. (35)
The components of the matrix Y are written
explicitly as
=G N2=G2, H1=0, Y =G, +Gp2;

N3 = (241 +Gy2)c0895 = (92051 +d19r2 + 4242 )sindy,
Y4 = (24,1 + G2 )singy = (4241 + 019r2 + 4242 )08 G2,

Linear path tracking: absolute position error
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(d) Linear path-Joint space tracking error.

Fig. 5. Casel: Small parametric variation-Linear path tracking.
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Circular path tracking: Cartesian Space
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(d) Circular path-Joint space tracking error.

Fig. 6. Casel: Small parametric variation-Circular path tracking.

Yy3 =§,1 €08q; — GG, sing,,
Yy4 =G,18ingy — 14,1 €08 q;.

Slotine et al. [3,4] used the gain matrices and the
adaptation rate matrix as A =201, K, =100, I =

diag[0.03, 0.05, 0.1, 0.3].

4.2.2 Simulation and results

To test the adaptation abilities of three comparative
controllers, the simulations were conducted for the
same plants having different parametric variations.
The first one is the case when the plant parameters are
varied relatively small at 2 seconds after starting of
the simulation. The parameters of the second
simulated plant have relatively large amounts of
variation at the same time as the first case. The plant
parameters used in the simulations are shown in Table
1. Tracking abilities of each comparative control
scheme were investigated through two kinds of path
tracking; linear path tracking and circular path

tracking. Since the manipulator is simulated to track
the linear path generated at initial position (1.7,0.2)

and reach to the final position (-0.3,1) after 4

seconds, the velocity of the desired linear motion is
(0.78m/s). The angular velocity of desired circular

moving is z/2rad/sec. All these simulations were
carried out using MATLAB with A=5ms sampling
interval.

When we simulated the tracking control of the
manipulator having slightly varied parameters, the PD
control alone showed sensitive response to parametric
variations. Figs. 5 and 6 show the simulation results
for the plant whose parameters are relatively slightly
varied. From the simulation results, it can be pointed
out that the proposed adaptive control scheme can
well cope with the parametric variations without
offset error, whereas the sliding mode control has
some offset error. :

We have conducted computer simulations to
investigate the affects of large variation of plant
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Linear path tracking

; T S —

: : ! : Desired

| : : | —PID

T g I === == - 7‘;777471 ——— Adaptive Sliding |-
M —— |

(a) Linear path-Cartesian space tracking.

Linear path tracking: Joint angle space
T = T T T

Joint angle q1, g2 [rad]

— Adaptive Sliding

MRAFC

i

[

| ;
0 0.5 1 1.5 2 25 3 3.5 4
Time [sec}

(c) Linear path-Joint space tracking.

Linear path tracking: absolute position error
T T T r o

Absolute position error

Time [sec]
(b) Linear path-Cartesian space tracking error.

Linear path tracking error: Joint angle space q1

T T T T
| | | |
e 02F - — - s e e = =
g | | | |
% 01— --Fr-—-—-F---F -k
]
E 0
[~}
= 01
| ! I | | | |
0.2 I 1 ! I 1 1 |
0 0.5 1 1.5 2 25 3 35 4
Time
Linear path tracking error: Joint angle space g2
[ e e e T T
| | | |
o 0 = ; T
o | !
2 | i
o
£ I 1
@
=3 I
B3 | |
= | |
| |
I I
1.5 2 25
m

Time

(d) Linear path-Joint space tracking error.

Fig. 7. Case2: Large parametric variation-Linear path tracking.

parameters on the response properties. Figs. 7 and 8
show the results of simulation for the case of large
parametric variation. In the simulation results, we can
see that the linear and circular tracking performance
of PID control have large fluctuation after parametric
variations, and the sliding mode control does not show
strong adaptability under large parametric variations,
whereas the developed adaptive fuzzy control scheme
can stabilize the system in short time period. The
following points can be pointed out from the
simulation results: (1) The suggested control scheme
shows excellent transient response properties such as
short reaching time, small overshoot, compared with
those of PD and adaptive sliding mode controller. (2)
The designed adaptive fuzzy controller can effectively
achieve the trajectory tracking for the plants with
large amount of parametric uncertainties. (3) The
suggested control scheme shows larger phase-lag and
smaller transient error for all the simulated situations.

5. CONCLUSIONS

In this paper, we have developed a direct model
reference adaptive fuzzy control (MRAFC) scheme
for the MIMO Takagi-Sugeno model whose structure
is assumed to be known but the parameters unknown.
The adaptation law of the MRAFC adjusts the
controller parameters on-line so that the plant output
tracks the reference model output. The developed
adaptive law guarantees the boundedness of all signals
in the closed-loop system and ensures that the plant
state tracks the state of the reference model
asymptotically with time for any bounded reference
input signal. In the whole design process, no strict
constraints and prior knowledge of the controlled
plant are required, and the asymptotic stability of the
control system can be guaranteed.

To verify the validity and effectiveness of the
MRAFC scheme, the suggested analysis and design
techniques were applied to the tracking control of
two-link robot manipulator and simulation studies
were carried out. In the control design, the MRAFC
was combined with feedforward PD control and used
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as the state stabilizer. From the simulation results, we
conclude that the suggested control scheme can
effectively achieve the trajectory tracking even for the
robot manipulator with relatively large amount of
parametric uncertainties.
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