• Title/Summary/Keyword: Adaptation to Uncertainty

Search Result 97, Processing Time 0.02 seconds

Immune Algorithm Based Active PID Control for Structure Systems

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1823-1833
    • /
    • 2006
  • An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I-PID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect.

Generation of Weather Data for Future Climate Change for South Korea using PRECIS (PRECIS를 이용한 우리나라 기후변화 기상자료의 생성)

  • Lee, Kwan-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.54-58
    • /
    • 2011
  • According to the Fourth Assessment Report of the Inter governmental Panel on Climate Change(IPCC), climate change is already in progress around the world, and it is necessary to start mitigation and adaptation strategies for buildings in order to minimize adverse impacts. It is likely that the South Korea will experience milder winters and hotter and more extreme summers. Those changes will impact on building performance, particularly with regard to cooling and ventilation, with implications for the quality of the indoor environment, energy consumption and carbon emissions. This study generate weather data for future climate change for use in impacts studies using PRECIS (Providing REgional Climate for Impacts Studies). These scenarios and RCM (Regional Climate Model) are provided high-resolution climate-change predictions for a region generally consistent with the continental-scale climate changes predicted in the GCM (Global Climate Model).

  • PDF

Adaptive Model Predictive Control for SI Engines Fuel Injection System

  • Gu, Qichen;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a model predictive control (MPC) based on a neural network (NN) model for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN model can cope with system uncertainty and time varying effects. A single dimensional optimization algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness of the developed method.

Robust State Feedback Control of Asynchronous Sequential Machines and Its Implementation on VHDL (비동기 순차 머신의 강인한 상태 피드백 제어 및 VHDL 구현)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2484-2491
    • /
    • 2009
  • This paper proposes robust state feedback control of asynchronous sequential machines with model uncertainty. The considered asynchronous machine is deterministic, but its state transition function is partially known before executing a control process. The main objective is to derive the existence condition for a corrective controller for which the behavior of the closed-loop system can match a prescribed model in spite of uncertain transitions. The proposed control scheme also has learning ability. The controller perceives true state transitions as it undergoes corrective actions and reflects the learned knowledge in the next step. An adaptation is made such that the controller can have the minimum number of state transitions to realize a model matching procedure. To demonstrate control construction and execution, a VHDL and FPGA implementation of the proposed control scheme is presented.

Development of Rating Curves Using a Maximum Likelihood Model (최우도 모형을 이용한 수위-유량곡선식 개발)

  • Kim, Gyeong-Hoon;Park, Jun-Il;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.83-93
    • /
    • 2008
  • The non-linear least squares model(NLSM) has long been the standard technique used by hydrologists for constructing rating curves. The reasons for its adaptation are vague, and its appropriateness as a method of describing discharge measurement uncertainty has not been well investigated. It is shown in this paper that the classical method of NLSM can model only a very limited class of variance heterogeneity. Furthermore, this lack of flexibility often leads to unaccounted heteroscedasticity, resulting in dubious values for the rating curve parameters and estimated discharge. By introducing a heteroscedastic maximum likelihood model(HMLM), the variance heterogeneity is treated more generally. The maximum likelihood model stabilises the variance better than the NLSM approach, and thus is a more robust and appropriate way to fit a rating curve to a set of discharge measurements.

Intelligent Sliding Mode Control for Robots Systems with Model Uncertainties (모델 불확실성을 가지는 로봇 시스템을 위한 지능형 슬라이딩 모드 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1014-1021
    • /
    • 2008
  • This paper proposes an intelligent sliding mode control method for robotic systems with the unknown bound of model uncertainties. In our control structure, the unknown bound of model uncertainties is used as the gain of the sliding controller. Then, we employ the function approximation technique to estimate the unknown nonlinear function including the width of boundary layer and the uncertainty bound of robotic systems. The adaptation laws for all parameters of the self-recurrent wavelet neural network and those for the reconstruction error compensator are derived from the Lyapunov stability theorem, which are used for an on-line control of robotic systems with model uncertainties and external disturbances. Accordingly, the proposed method can not only overcome the chattering phenomenon in the control effort but also have the robustness regardless of model uncertainties and external disturbances. Finally, simulation results for the five-link biped robot are included to illustrate the effectiveness of the proposed method.

Design of a Real Time Adaptive Controller for SCARA Robot Using Digitl Signal Process (디지탈 신호처리기를 사용한 스카라 로보트의 실시간 적응제어기 설계)

  • 김용태;서운학;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.472-477
    • /
    • 1996
  • This paper presents a new approachtothe design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The prpposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Nonlinear Modification Scheme for Reducing Cautiousness of Linear Robust Control

  • Maki, Midori;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.108-111
    • /
    • 1999
  • In this paper, we develope a composite control law for linear systems with norm-bounded time-varying parameter uncertainties, which consists of a basic linear robust control do-signed so as to generate a desired transient time-response for the worst-case parameter variation and a nonlinear modification term designed so as to reduce cautiousness of the linear robust control in an adaptive manner. The proposed controller is established such that the reduction of cautiousness of the linear robust control is well incorporated into the achievement of a good transient behavior.

  • PDF

A Study on Robust Controller Design of Multi-Joint Robot Manipulator Using Adaptive Control (적응제어기법에 의한 다관절 로보트 매니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.108-118
    • /
    • 1989
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonliearity and parameter uncertainty in robot dynamics model. In this paper, an adaptive control scheme for a robot manipulator is proposed to design robust controller using model reference adaptive control technique and hyperstability theory but it does away with] assumption that the process is characterized by a linear model remaining time invariant during the adaptation process. The performance of controller is demonstrated by the simulation about position and speed control of a six-link manipulator with disturbance and payload variation.

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.