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Abstract   This paper presents a model predictive control (MPC) based on a neural network (NN) model 

for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe 

nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN 

model can cope with system uncertainty and time varying effects. A single dimensional optimization 

algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine 

fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness 

of the developed method.  
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I. Introduction
Many of the current production fuel injection 

controllers utilize feed-forward control based on a 

mass airflow sensor located upstream of the throttle 

plus a proportional integral (PI) type feedback control. 

The feed-forward control with look-up tables requires 

a laborious process of calibration and tuning. 

Furthermore, it is difficult to apply this method since it 

needs the output magnitude information that is not 

available in the A/F ratio control [1]. A variety of 

researches have been conducted during past decade on 

advanced control strategies on AFR. Onder and 

Geering [2] made an LQR regulator to improve the 

air-fuel ratio control. It obtained fairly good AFR when 

throttle angle ranging from o4  to 
o8 , but is impractical 

due to heavy computations resulting from the high 

order of linearized model.

A nonlinear MPC control scheme for air-fuel ratio 

based on a RBF model is developed in this paper. The 

RBF network is on-line adapted to model engine 

parameter uncertainties and severe nonlinear dynamics 

in different operating regions. Based on the 

multiple-step-ahead prediction of the air fuel ratio, an 

optimal control is obtained to maintain the 

stoichiometric value when throttle angle changes. A 

single dimensional optimization algorithm, Secant 

method, is used to reduce the optimization time, so that 

the developed method can be implemented to the fast 

dynamics of automotive engines. Satisfactory AFR 

control results are obtained by using the developed 

MPC scheme, as demonstrated on the MVEM [3].

II. Engine Dynamics
The engine dynamics concerned with air/fuel ratio 

control include air intake manifold, fuel injection, 

crankshaft speed, and exhaust oxygen measurement. A 

schematic diagram of the engine dynamics is shown in 
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Fig.1. 

[Fig. 1] Schematic diagram of engine dynamics

The system has one input, the injected fuel mass 

flow rate fim& one output, air/fuel ratio AFR. Besides, 

the system is subjected to a significant disturbance, the 

throttle angle u . Due to the space limitation, the 

dynamics of each of the four sub-systems, anumber of 

differential and algebraic equations, are not included. 

The interested reader can refer to [4].

The manifold filling dynamics can be described by 

manifold pressure and temperature dynamics,
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The crankshaft speed dynamics can be described as
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Both the friction power fP  and the pumping power

pP  are related with the manifold pressure ip  and the 

crankshaft speed n . The fuel injection dynamics are 
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where the model is based on keeping track of the 

fuel mass flow. The parameters in the model are the 

time constant for fuel evaporation, fτ , and the 

proportion fX  of the fuel which is deposited on the 

intake manifold, ffm& , or close to the intake valves, fvm& .

III. Adaptive neural network model
The advantage of using adaptive neural network is 

that it can track the time-varying properties of the 

process to provide efficient information to the 

controller, under circumstances where the process 

parameters change. Radial basis function networks 

(RBFN) with Gaussian transfer function are chosen in 

this application as it has been shown to map a 

nonlinear function arbitrarily well, and possess the best 

approximation property [5]. 

A. Data Collection

A set of random amplitude signal (RAS) combining 

short pulse width (transient state) and long pulse width 

(steady state) was designed for throttle angle and fuel 

injection, therefore the RBFN model after trained would 

produce adequate transient and steady state 

performance. Throttle angle was bounded between 20 

and 40 degree and the range of fuel injection is from 

0.0014 to 0.0079(kg/s), the sample time is set to be 0.1s. 

The excitation signal is shown in Fig.2 partially, 

consisting of two parts. The length of square waves is 

set 0.3s in the first part and 1.5sin the second part. A 

set of 3000 data samples of AFR obtained was divided 

into two groups. The first 1500 data samples were used 
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for training RBFN model and the rest would be 

remained for model validation.

[Fig. 2] Training data with mixed pulse width 

B. Engine Modelling

Given the expanded engine model as shown Fig.1, 

the RBFN engine model has 6 inputs and one output as 

shown in Fig.3, where orders and delays are 

determined through experiments. The centres c  and 

the width σ in hidden layer nodes of the RBFN were 

determined using K-means algorithm and ρ -nearest 

neighbourhood heuristic respectively. RLS algorithm 

was used for training the neural network and the 

corresponding parameters were set as follows, 

99.0=μ , ( ) 2
161022.20 ×
− ××=

hnUw  and 

( )
hh nnIP ×××= 41010 , where I  is the 

identity matrix and U stands for a matrix whose 

components are ones.

After training with the training data set and test 

with the test data, the modelling error of the AFR in 

the normalized value with the mean absolute error, 

MAE = 0.0265.

[Fig. 3] RBFN structure

IV. mpc of air fuel ratio
A. Control System Structure

[Fig. 4] Configuration of model predictive control on 

AFR 

The idea of model predictive control with neural 

network has been introduced in details by Draeger [6]. 

The strategy is shown in Fig.4. The obtained adaptive 

RBF neural network is used to predict the engine 

output for 2N steps ahead. The nonlinear optimizer 

minimizes the errors between the set point and the 

engine output by using the cost function,
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Here, 1N  and 2N  define the prediction horizon. ξ is 

a control weighting factor which penalizes excessive 

movement of the control input, the fuel injection fim& . 

uN is the control horizon. Then the remaining main 

problem of MPC is to solve the nonlinear optimization 

problem, i.e. in each sample period, calculate a series of 

optimal )1(,),2(),( 2 −++ Nkmkmkm fififi &L&& , from 

which the neural network model generates outputs to 

minimize ( )kJ in (30). Finally the first control variable 

)(km fi& is used to control the process and this procedure 

is repeated in the next sample period.
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B. Single-Dimensional Optimization Approach

As second-orderRBFN structure was chosen to 

achieve the minimum prediction error in engine 

modelling, the optimization problem involved in the 

paper is multi-dimensional and constrained. That is, we 

are going to find the future input 

)1(,),1(),( 2 −++ Nkmkmkm fififi &L&&  that can 

minimize ( )kJ such that the predicted outputs 

( ) ( ) ( )2ˆ,,1ˆ,ˆ Nkykyky ++ L coincides with the 

modified set-point input ( )kmspi , ( )1+kmspi , 

( )2,, Nkmspi +L , here the fuel injection rate is 

bounded within the region from 0.0014 to 0.0079(kg/s). 

Sequential Quadratic Programming (SQP) can be used 

to acquire the accurate solution, which is perhaps one 

of the best methods of optimization, would be shown in 

next section. However, the multi-dimensional 

optimization always requires heavy computation, 

especially when constraints exist. 

Practical applications often place emphasis on 

computation speed on the premise that all the 

performance requirements are met. Therefore, we 

chose the simplest structure in this paper and assumed 

that the input fim&  will remain constant over the prediction 

horizon: )1(,)1()( 2 −+=+= Nkmkmkm fififi &L&& , 

in this case，there is only one parameter ( )km fi& that 

we are going to find. The optimization problem to be 

solved is reduced as one-dimensional. Secant method is 

chosen to find the solution of this nonlinear 

programming (NLP) problem and our experiments 

show that it is more efficient and reliable in this 

application if compared with the other interpolation 

methods.

1) Secant Method: 
The general nonlinear programming problem could 

be defined as, 
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where RRJ n →: is the objective function, 

mn
eq RRc →: and 

pn
in RRc →: are constraint 

functions. All of these functions are smooth. Only 

inequality constraint applied in our case, as fuel 

injection rate is bounded within a region.

The Secant Method is to find the improved design 

vector 1+iX  from the current design vector iX  using 

the formula

iiii SXX ∗
+ += ζ1 (10)

where iS  is the known search direction and 
∗
iζ is 

the optimal step length found by solving the 

one-dimensional minimization problem as 

( )[ ]iiii SXJ
i

ζζ
ζ

+=∗ min (11)

Here the objective function J is to be evaluated at 

any trial step length 0t  as 

)()( 00 ii StXJtJ += (12)

Similarly, the derivative of the function J with 

respect to ζ corresponding to the trial step length 0t  

is to be found as 
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The necessary condition for ( )ζJ  to have a 

minimum of 
∗ζ  is that ( ) 0=′ ∗ζJ . The Secant 

Method seeks to find the root of this equation [7]. The 

equation is given with the form as follows,

( ) ( ) 0)( =−+′=′ ii sJJ ζζζζ (14)

where s is the slope of the line connecting the two 

points ( )( )AJA ′,  and ( )( )BJB ′, , where A and 

Bdenote two different approximations to the correct 

solution, 
∗ζ . The slope s can be expressed as 

( ) ( )
AB
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−

′−′
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(15)

Equation (14) approximates the function ( )∗′ ζJ

between A and B as a linear equation and the solution 

of equation (14) gives the new approximation to the 

root of ( )∗′ ζJ  as 

[Fig. 5] Iterative process of secant method
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The iteration process given in equation (16) is 

illustrated in Fig.5.

2) Simulation Results using Secant Method
In the simulation, the set-point of the system is set 

to be the constant stoichiometric value 14.7. The 

throttle angle θ is set as disturbance, a change from 

o25  to 
o30 with 0.5% uncertainty as shown in Fig.6. 

This is to evaluate the tracking performance and the 

robustness to throttle angle change of the designed 

system. 
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[Fig. 6] Throttle angle pattern in simulations

The AFR is to be controlled between the %1±  

bounds of the stoichiometric value (14.7). Choosethe 

sampling time to be 0.1s. The parameters of nonlinear 

optimization were chosen as 11 =N , 62 =N , 1=ξ , 

0=uN , then the MPC of SI engines can be 

considered as a sub-problem of NLP problems: 

)(min fi
Rx

mf
n

&
∈  subject to 

u
fifi

l
fi mmm &&& ≤≤ , where 

RRf n →: , 
l

fim&  and 
u

fim& represent the lower bound 

and the upper bound of the control variable fim& .

The system output under the developed MPC is 

displayed in Fig.7, together with the associated 

manipulated variable fim&
displayed in Fig.8. The mean 
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absolute error (MAE) of the AFR tracking is 0.4464. 

One can see thatthe air-to-fuel ratio is regulated within 

a %1±  neighbourhood of stoichiometric. This 

performance is much better than that of PI controller 

[8] that is widely used in automotive industry. 
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[Fig. 7] MPC on AFR using secant method 
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[Fig. 8] Fuel injection using secant method

The time cost in optimization in each sample period 

is shown in Fig 9. The mean time cost in one sample 

period is 0.0277 seconds. 

[Fig. 9] Time cost on optimization using secant method

Since the whole simulation was running in Matlab 

environment, we feel that the further reduction on time 

cost of optimization could be achieved if optimization 

algorithm is realized by Ccode in real application. The 

multi-dimensional approach for MPC was implemented 

using Reduced Hessian Method and is compared with 

Secant Method, in terms of the control performance and 

time consumptions on optimization (see Fig 10 and 11)

 

[Fig. 10] MPC on AFR using reduced hessian method

[Fig. 11] Fuel injection using reduced hessian method

The simulation results show that Reduced Hessian 

Method has the similar tracking performance of Secant 

Method;however, its time consumption in optimization 

is much more than that of previous method. As shown 

in Fig 12, the mean time cost in one sample period 

using this method is 0.0473 seconds in our experiment, 

which is nearly twice as many as that used by Secant 

Method.
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[Fig. 12] Time cost on optimization using reduced 

hessian method

V. conclusions
In thispaper, adaptive RBF model based MPC is 

applied to AFR control of automotive engines. The 

simulation results validated that the developed method 

can control the AFR to track the set-point value under 

disturbance of changing throttle angle. To meet the 

requirement for fast optimization in engine control, a 

one-dimensional optimization method, Secant Method, 

is implemented in the MPC and is compared with the 

multi-dimensional method, Reduced Hessian Method. 

Simulations show a much shorter optimization time 

using Secant Method and the achieved tracking control 

with similar performance to that in Reduced Hessian 

Method. 
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