• 제목/요약/키워드: Actuation

검색결과 756건 처리시간 0.022초

Designing a Magnetically Controlled Soft Gripper with Versatile Grasping Based on Magneto-Active Elastomer

  • Li, Rui;Li, Xinyan;Wang, Hao;Tang, Xianlun;Li, Penghua;Shou, Mengjie
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.688-700
    • /
    • 2022
  • A composite bionic soft gripper integrated with electromagnets and magneto-active elastomers is designed by combining the structure of the human hand and the snake's behavior of enhancing friction by actively adjusting the scales. A silicon-based polymer containing magnetized hard magnetic particles is proposed as a soft finger, and it can be reversibly bent by adjusting the magnetic field. Experiments show that the length, width, and height of rectangular soft fingers and the volume ratio of neodymium-iron-boron have different effects on bending angle. The flexible fingers with 20 vol% are the most efficient, which can bend to 90° when the magnetic field is 22 mT. The flexible gripper with four fingers can pick up 10.51 g of objects at the magnetic field of 105 mT. In addition, this composite bionic soft gripper has excellent magnetron performance, and it can change surface like snakes and operate like human hands. This research may help develop soft devices for magnetic field control and try to provide new solutions for soft grasping.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.

Thermomechanical and electrical resistance characteristics of superfine NiTi shape memory alloy wires

  • Qian, Hui;Yang, Boheng;Ren, Yonglin;Wang, Rende
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.183-193
    • /
    • 2022
  • Structural health monitoring and structural vibration control are multidisciplinary and frontier research directions of civil engineering. As intelligent materials that integrate sensing and actuation capabilities, shape memory alloys (SMAs) exhibit multiple excellent characteristics, such as shape memory effect, superelasticity, corrosion resistance, fatigue resistance, and high energy density. Moreover, SMAs possess excellent resistance sensing properties and large deformation ability. Superfine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system. In this study, the mechanical properties and electrical resistance sensing characteristics of superfine NiTi SMA wires were experimentally investigated. The mechanical parameters such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio were analyzed at different training strain amplitudes and numbers of loading-unloading cycles. The results demonstrate that the detwinning process shortened with increasing training amplitude, while austenitic mechanical properties were not affected. In addition, superfine SMA wires showed good strain-resistance linear correlation, and the loading rate had little effect on their mechanical properties and electrical resistance sensing characteristics. This study aims to provide an experimental basis for the application of superfine SMA wires in engineering.

형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발 (Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp)

  • 신민기;조장호;우현수;김기영
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석 (Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot)

  • 임소정;이성준;백상민;허석행;유재관;조규진
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

항공기 디지털 전자식 비행제어 시스템 기술 개발 동향 (Aircraft Digital Fly-By-Wire System Technology Development Trend)

  • 채성병
    • 한국전자통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.509-520
    • /
    • 2023
  • 항공기에서 소형 제트기까지 항공기에 적용되는 플라이 바이 와이어 시스템의 구성 및 특성등에 대하여 기술 하였다. 특히 비행조종컴퓨터 다중화 방안과 데이터 통신 버스, 조종면 작동기, 플라이 바이 와이어 시스템을 통하여 적용되는 제어 법칙 등에 대한 기술 개발 동향에 대해 고찰하였다. 전투기에 처음 적용되었던 플라이 바이 와이어 시스템은 여러 가지 장점으로 인해 까다로운 인증과정을 거쳐 민간 항공기에까지 적용되었고, 최근에는 소형제트기까지 적용 범위가 확장되고 있으며 미래에는 대부분 플라이 바이 와이어 항공기가 주를 이룰 것으로 전망된다.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

전완의 회외 및 회내를 보조하는 유연한 착용형 로봇 개발 (Development of Soft Wearable Robot for Assisting Supination and Pronation of Forearm)

  • 김규범;박지훈;조규진
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.359-366
    • /
    • 2023
  • In order to fully utilize the functions of the hand which is the end effector of the upper limb, other parts of the upper limb have to perform their own roles. Among them, the pronation and supination of the forearm, which allows the hand to rotate along the longitudinal direction of the forearm, play an important role in activities of daily living. In this paper, a soft wearable robot that assists the pronation and supination of the forearm for individuals with weakened or lost upper limb function is proposed. The wearable robot consists of an anchoring part with polymer (wrist strap, elbow strap), a tendon with a belt and wire, and an actuation module. It was developed based on the requirements with respect to friction of anchoring part, forearm compression, and friction of the tendon. It was confirmed that these requirements were satisfied through literature review and experiments. Since all components exist within the forearm when worn, it is expected to be easy to combine with the already developed soft wearable robots for the hand, wrist, elbow, and shoulder.

Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석 (Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation)

  • 장명진;양선교;정광필
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.