DOI QR코드

DOI QR Code

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot

소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석

  • Received : 2023.05.30
  • Accepted : 2023.07.20
  • Published : 2023.08.31

Abstract

Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

Keywords

Acknowledgement

This research is performed based on the cooperation with the Defense Acquuisition Program Administration and Defense Rapid Acquisition Technology Research Institute's Critical Technology R&D program (No. UC190002D)

References

  1. H. W. Chun, "Defence×IT Convergence : Focus on Military Robots," Electronics and Telecommunications Trends, vol. 28, no. 4, pp. 107-117, Aug., 2013, DOI: 10.22648/ETRI.2013.J.280411. 
  2. P. Birkmeyer, K. Peterson, and R. S. Fearing, "DASH: A dynamic 16g hexapedal robot," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, pp. 2683-2689, 2009, DOI: 10.1109/IROS.2009.5354561. 
  3. R. F. Chapman, "Legs and locomotion," The Insects: Structure and Function, 4th ed. Cambridge: Cambridge University Press, 1998, pp. 151-184, DOI: 10.1017/CBO9780511818202. 
  4. J. Watson, R. E. Ritzmann, S. N. Zill, and A. J. Pollack, "Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics," Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, vol. 188, pp. 39-53, Feb., 2002, DOI: 10.1007/s00359-002-0277-y. 
  5. S. W. Gart, C. Yan, R. Othayoth, Z. Ren, and C. Li, "Dynamic traversal of large gaps by insects and legged robots reveals a template," Bioinspiration & Biomimetics, vol. 13, no. 2, Feb., 2018, DOI: 10.1088/1748-3190/aaa2cd. 
  6. D. M. Dudek and R. J. Full, "Passive mechanical properties of legs from running insects," Journal of Experimental Biology, vol. 209, no. 8, pp. 1502-1515, Apr., 2006, DOI: 10.1242/jeb.02146. 
  7. S. Sponberg and R. J. Full, "Neuromechanical response of musculoskeletal structures in cockroaches during rapid running on rough terrain," Journal of Experimental Biology, vol. 211, no. 3, pp. 433-446, Feb., 2008, DOI: 10.1242/jeb.012385. 
  8. R. J. Full and M. S. Tu, "Mechanics of six-legged runners," Journal of Experimental Biology, vol. 148, no. 1, pp. 129-146, Jan., 1990, DOI: 10.1242/jeb.148.1.129. 
  9. L. H. Ting, R. Blickhan, and R. J. Full, "Dynamic and Static Stability in Hexapedal Runners," Journal of Experimental Biology, vol. 197, no. 1, pp. 251-269, Dec., 1994, DOI: 10.1242/jeb.197.1.251. 
  10. J. J. Chen, A. M. Peattie, K. Autumn, and R. J. Full, "Differential leg function in a sprawled-posture quadrupedal trotter," Journal of Experimental Biology, vol. 209, no. 2, pp. 249-259, Jan., 2006, DOI: 10.1242/jeb.01979. 
  11. A. T. Baisch, C. Heimlich, M. Karpelson, and R. J. Wood, "HAMR3: An autonomous 1.7g ambulatory robot," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, USA, pp. 5073-5079, DOI: 10.1109/IROS.2011.6095063. 
  12. A. T. Baisch and R. J. Wood, "Pop-up assembly of a quadrupedal ambulatory MicroRobot," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 1518-1524, 2013, DOI: 10.1109/IROS.2013.6696550. 
  13. A. M. Hoover, S. Burden, X.-Y. Fu, S. S. Sastry, and R. S. Fearing, "Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot," IEEE/ RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan, pp. 869-876, 2010, DOI: 10.1109/BIOROB.2010.5626034. 
  14. D. W. Haldane, K. C. Peterson, F. L. Garcia Bermudez, and R. S. Fearing, "Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot," IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 3279-3286, 2013, DOI: 10.1109/ICRA.2013.6631034. 
  15. D. W. Haldane and R. S. Fearing, "Running beyond the bioinspired regime," IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, pp. 4539-4546, 2015, DOI: 10.1109/ICRA.2015.7139828. 
  16. S.-H. Chae, S.-M. Baek, J. Lee, S. Yim, J.-K. Ryu, Y.-J. Cho, and K.-J. Cho, "Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload," Journal of Korea Robotics Society, vol. 14, no. 4, pp. 270-277, Nov., 2019, DOI: 10.7746/jkros.2019.14.4.270. 
  17. J. Lee, G.-P. Jung, S.-M. Baek, S.-H. Chae, S. Yim, W. Kim, and K.-J. Cho, "CaseCrawler: A Lightweight and Low-Profile Crawling Phone Case Robot," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5858-5865, Oct., 2020, DOI: 10.1109/LRA.2020.3010205. 
  18. D. S. Kim, S. Jung, and G.-P. Jung, "A Milli-Scale Hexapedal Robot using Planar Linkages," Journal of Korea Robotics Society, vol. 13, no. 2, pp. 97-102, Jun., 2018, DOI: 10.7746/jkros.2018.13.2.097. 
  19. T.-Y. Kim, C. Kim, S.-H. Kim, and G.-P. Jung, "MutBug: A Lightweight and Compact Crawling Robot That Can Run on Both Sides," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1409-1415, Apr., 2019, DOI: 10.1109/LRA.2019.2895896. 
  20. S. Yim, S.-M. Baek, J. Lee, S.-H. Chae, J.-K. Ryu, Y.-J. Jo, and K.-J. Cho, "Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot," Journal of Korea Robotics Society, vol. 14, no. 4, pp. 278-284, Nov., 2019, DOI: 10.7746/jkros.2019.14.4.278. 
  21. S. Kim, J. E. Clark, and M. R. Cutkosky, "iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running," The International Journal of Robotics Research, vol. 25, no. 9, pp. 903-912, Sept., 2006, DOI: 10.1177/0278364906069150. 
  22. S. Nansai, N. Rojas, M. R. Elara, R. Sosa, and M. Iwase, "On a Jansen leg with multiple gait patterns for reconfigurable walking platforms," Advances in Mechanical Engineering, vol. 7, no. 3, Mar., 2015, DOI: 10.1177/1687814015573824. 
  23. R. J. Wood, S. Avadhanula, M. Menon, and R. S. Fearing, "Micro-robotics using composite materials: the micromechanical flying insect thorax," IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, pp. 1842-1849, 2003, DOI: 10.1109/ROBOT.2003.1241863. 
  24. W. S. N. Trimmer, "Microrobots and micromechanical systems," Sensors and Actuators, vol. 19, no. 3, pp. 267-287, Sept., 1989, DOI: 10.1016/0250-6874(89)87079-9.