• Title/Summary/Keyword: Active snubber

Search Result 95, Processing Time 0.047 seconds

Current-Source Pulse Density Modulated Parallel Resonant Inverter with A Single Resonant Snubber and Its Unique Application

  • Wang Y.X.;Koudriavtsev O.;Konishi Y.;Okuno A.;Nakaoka M.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.261-265
    • /
    • 2001
  • In this paper, a current-source type parallel indudor compensated load resonant high-frequency soft switching inverter using IGBTs for driving the newly-produced silent discharge type ozone generating tube and excimer lamp for UV generation which incorporate a single switched capacitor resonant snubber between the port in DC busline side is presented, together with its pulse modulated unique output power regulation characteristics.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Reducing Overshoot Voltage of SiC MOSFET in Grid-Connected Hybrid Active NPC Inverters (계통 연계형 Hybrid Active NPC 인버터의 SiC MOSFET 오버슈트 전압 저감)

  • Lee, Deog-Ho;Kim, Ye-Ji;Kim, Seok-Min;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.459-462
    • /
    • 2019
  • This work presents methods for reducing overshoot voltages across the drain-source of silicon carbide (SiC) MOSFETs in grid-connected hybrid active neutral-point-clamped (ANPC) inverters. Compared with 3-level NPC-type inverter, the hybrid ANPC inverter can realize the high efficiency. However, SiC MOSFETs conduct its switching operation at high frequencies, which cause high overshoot voltages in such devices. These overshoot voltages should be reduced because they may damage switching devices and result in electromagnetic interference (EMI). Two major strategies are used to reduce the overshoot voltages, namely, adjusting the gate resistor and using a snubber capacitor. In this paper, advantages and disadvantages of these methods will be discussed. The effectiveness of these strategies is verified by experimental results.

Active Resonant Snubber for Ideal Switched PWM Converter (능동형 공진 스너버)

  • Moon, Gun-Woo;Lee, Jung-Hoon;Jung, Young-Seok;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.412-414
    • /
    • 1994
  • A new active resonant snubber (ARS) circuit providing the ideal switching conditions for PWM converter is presented. By using the proposed ARS circuit to PWM converters, the power switches can be operated to give zero-current and zero-voltage at both the instant of switch off and switch on, without increasing voltage/current stresses of the switches. Furthermore, the PWM converters employed ARS circuit has the advantage that it can operate at constant frequency, giving better definded EMI and filter ripple, and it is also suited for high-power application regardless of the semiconductor devices (such as MOSFETs or IGBTs) used as a power switches.

  • PDF

A New Active Lossless Snubber for Half-Bridge Dual converter (하프 브릿지 듀얼 컨버터를 위한 새로운 능동형 무손실 스너버)

  • Han Sang-Kyoo;Kang Jeong-Il;Moon Gun-Woo;Youn Myung-Joong;Kim Youn-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.480-484
    • /
    • 2002
  • A new active lossless snubber for half-bridge dual converter(that is called 'dual converter') is proposed in this paper. It features soft switching(ZVS) as well as turn-off snubbing in both main and auxiliary switches. As it uses parasitic components, such as leakage inductances and switch output capacitances etc, it helps the dual converter to operate at the higher frequency with a higher efficiency and smaller size reactive components. The operational principle, theoretical analysis, and design consideration are presented. To confirm the operation, features and validity of the proposed circuit, simulated results from an 1kW, 24V/DC-250V/DC are presented.

  • PDF

Analysis and Implementation of a DC-DC Converter with an Active Snubber

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.779-786
    • /
    • 2011
  • This paper presents a soft switching converter to achieve the functions of zero voltage switching (ZVS) turn-on for the power switches and dc voltage step-up. Two circuit modules are connected in parallel in order to achieve load current sharing and to reduce the size of the transformer core. An active snubber is connected between two transformers in order to absorb the energy stored in the leakage and magnetizing inductances and to limit the voltage stresses across the switches. During the commutation stage of the two complementary switches, the output capacitance of the two switches and the leakage inductance of the transformers are resonant. Thus, the power switches can be turned on under ZVS. No output filter inductor is used in the proposed converter and the voltage stresses of the output diodes is clamped to the output voltage. The circuit configuration, the operation principles and the design considerations are presented. Finally, laboratory experiments with a 340W prototype, verifying the effectiveness of the proposed converter, are described.

A Novel Single Phase Soft Switched PFC Converter

  • Altintas, Nihan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1592-1601
    • /
    • 2014
  • In this study, a novel single phase soft switched power factor correction (PFC) converter is developed with active snubber cell. The active snubber cell provides boost switch both to turn on with zero voltage transition (ZVT) and to turn off with zero current transition (ZCT). As the switching losses in the proposed converter are too low, L and C size can be reduced by increasing the operating frequency. Also, all the semiconductor devices operate with soft switching. There is no additional voltage stress in the boost switch and diode. The proposed converter has a simple structure, low cost and ease of control as well. It has a simple control loop to achieve near unity power factor with the aid of the UC3854. In this study, detailed steady state analysis of the proposed converter is presented and this theoretical analysis is verified by a prototype of 100 kHz and 500 W converter. The measured power factor and efficiency are 0.99 and 97.9% at full load.

A Study on the ZVT Boost Converter with reduced Auxiliary switch losses (ZVT Boost 컨버터의 보조스위치 손실 저감에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1428-1431
    • /
    • 2005
  • This paper presents an improved ZVT(Zero Voltage Transition) DC/DC Boost Converter using Active Snubber. The Conventional ZVT PWM Boost Converter is improved to minimize the switching loss of auxiliary switch using the minimum number of the components. In this thesis, advantage and disadvantages of Conventional ZVT Converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter will be discussed. In comparison a previous ZVT converter, the proposed converter reduces turn-off switching loss of the auxiliary switch. Therefore, the proposed converter has a high efficiency by active snubber. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

A New Gate Driver Technique for Voltage Balancing in Series-Connected Switching Devices (직렬 연결된 SiC MOSFET의 전압 평형을 위한 새로운 능동 게이트 구동 기법)

  • Son, Myeong-Su;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • The series-connected semiconductor devices structure is one way to achieve a high voltage rating. However, a problem with voltage imbalance exists in which different voltages are applied to the series-connected switches. This paper proposed a new voltage balancing technique that controls the turn-off delay time of the switch by adding one bipolar junction transistor to the gate turn-off path. The validity of the proposed method is proved through simulation and experiment. The proposed active gate driver not only enables voltage balancing across a variety of current ranges but also has a greater voltage balancing performance compared with conventional RC snubber methods.

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF