• Title/Summary/Keyword: Active power loss

Search Result 271, Processing Time 0.027 seconds

An Improved Short Circuit Protection Scheme for IGBT Inverters (IGBT 인버터를 위한 향상된 단락회로 보호기법)

  • 서범석;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.426-436
    • /
    • 1998
  • Identification of fault current during the operation of a power semiconductor switch and activation of suitable remedial actions are important for reliable operation of power converters. A short circuit is a basic and severe fault situation in a circuit structure such as voltage source converters. This paper presents a new active protection circuit for fast and precise clamping and safe shutdown of fault currents of the IGBTs. This circuit allows operation of the IGBTs with a higher on-state gate voltage, which can thereby reduce the conduction loss in the device without compromising the short circuit protection characteristics. The operation of the circuit is studied under various conditions, considering variation of temperature, rising rate of fault current, gate voltage value, and protection circuit parameters. An evaluation of the operation of the circuit is made using IGBTs from different to confirm the effectiveness of the protection circuit.

  • PDF

Improved ZVT(Zero Voltage Transition) Boost Converter (개선된 ZVT 부스트 컨버터)

  • Lee Il-Oun;Lee Dong-Young;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.673-676
    • /
    • 2001
  • In this paper, the improved zero-voltage transition(ZVT) PWM boost converter using an inductor feedback technique is proposed. The improved circuit uses a low-voltage zener diode to reduce the turn-off witching loss of the auxiliary witch and EMI noise. Using this technique, soft-witching for the auxiliary switch is guaranted at wide line and load ranges and some of the energy circulating in the auxiliary circuit is fed to the load Since the active switches are turned on and off softly, the witching losses and EMI noise are reduced significantly and the higher efficiency of the system is achieved. In this paper, the modes of converter operation are explained and analyzed, design guidelines are given, and experimental results of 1kW, 100kHz prototype system are presented.

  • PDF

An Extended Approach for Newton-Raphson Power Flow Calculation (Newton-Raphson 조류계산법(潮流計算法)의 확장(擴張) 방안(方案) 연구(硏究))

  • Shin, Joong-Rin;Yim, Han-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.205-210
    • /
    • 1992
  • The power flow calculations are the most important and powerful tools in the various studies of power system engineering. Newton-Raphson method, among the various power flow calculation techniques, is normally used due to its rapidness of numerical convergency. In the conventional Newton-Raphson method, however, there are some unrealistic assumptions, in which all the system power losses are considered to be supplied by the slack bus generator. Introducing the system power loss formula and augmenting the conventional Newton-Raphson power flow method, we can relieve the unrealistic assumption and improve the performance of power flow calculation. In this study, A new approach for handling the losses and augmenting the conventional power flow problem is proposed. The proposed method estimates the increamental changes of active power on each generation bus with respect to the change of total system power losses and the estimated value are used to update the slack bus power. If some studies for more theoritical investigations and verifications are followed, the proposed approach will show some improvement of the conventional method and give lots of contribution to increase the performance of power flow techniques in power systems engineering.

  • PDF

The RF Power Amplifier Using Active Biasing Circuit for Suppression Drain Current under Variation Temperature (RF전력 증폭기의 온도 변화에 따른 Drain 전류변동 억제를 위한 능동 바이어스 회로의 구현 및 특성 측정)

  • Cho, Hee-Jea;Jeon, Joong-Sung;Sim, Jun-Hwan;Kang, In-Ho;Ye, Byeong-Duck;Hong, Tchang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • In the paper, the power amplifier using active biasing for LDMOS MRF-21060 is designed and fabricated. Driving amplifier using AH1 and parallel power amplifier AH11 is made to drive the LDMOS MRF 21060 power amplifier. The variation of current consumption in the fabricated 5 Watt power amplifier has an excellent characteristics of less than 0.1A, whereas passive biasing circuit dissipate more than 0.5A. The implemented power amplifier has the gain over 12 dB, the gain flatness of less than $\pm$0.09dB and input and output return loss of less than -19dB over the frequency range 2.11~2.17GHz. The DC operation point of this power amplifier at temperature variation from $0^{\circ}C$ to $60^{\circ}C$ is fixed by active circuit.

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide (측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기)

  • 김광택;유호종;김성국;이소영;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 1999
  • In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF

Loss Analysis of Inductive Power Transfer System according to Secondary Side Power Conversion System Configuration (자기유도방식 무선전력전송 시스템의 수신패드 측 전력변환회로 구성에 따른 손실 분석)

  • Ann, Sangjoon;Kim, Min-Kook;Kim, Min-Jung;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.219-220
    • /
    • 2016
  • 본 논문에서는 무선전력전송 시스템의 수신패드 측 전력변환회로 구성 방식에 따른 손실을 분석한다. 수신패드 측 전력변환회로를 DC-DC 컨버터로 구성한 구조와 bridgeless active rectifier (BAR)로 구성한 구조에 대해서 손실을 비교 분석한다. 수동소자에서의 손실은 수식적으로 계산하고, 전력용 반도체에서의 손실은 PSIM thermal module을 이용하여 분석한다.

  • PDF

Full Wave Mode ZVT-PWM DC-DC Converters (전파형 ZVT-PWM DC-DC 컨버터)

  • 김태우;안희욱;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2001
  • This paper proposes a full wave mode ZVT-PWM boost converter. The converter with the auxiliary switch in a full wave mode makes possible soft switching operation of all switches including the auxiliary switch whereas the auxiliary switch is turned off with hard switching in the conventional converter. Therefore, the proposed converter reduces the turn-off switching loss and switching noise of the auxiliary switch without additional passive and/or active elements and high power density system can be realized.

  • PDF

The Single Phase Converter of Power Factor Collection Type with Simple Switching Method (간이 스위칭법에 의한 단상 역률개선형 컨버터)

  • 문경희;고강훈;김은수;곽동걸;조판제;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.323-326
    • /
    • 1999
  • For decrease the harmonic current components of the power source, a first method is insert the choke coil that used the choke input type rectifier, the booster chopper circuit and buck chopper circuit. And the several method are studying like as the PWM(Pulse Width Modulation) converter and the active filter type which is used the high frequency switching and the sinusoidal wave formed input current. In this type, there are many problem as a low efficiency, increased the noise, the high leakage current and cost up by the high frequency switching. For improve this problems, the partial resonan method is used on the booster inducter and lossles snubber condenser. This method decreased the distortion factor has lower harmonic components than the hard switching and there is no switching loss by the ZCS(Zero Current Switching) at switch turn-on and the ZVS(Zero Voltage Swithcing) at switch turn-off

  • PDF

A Study on the Soft Switching of High Power Factor Flyback Converter (고역률 플라이백 컨버터의 소프트 스위칭에 관한 연구)

  • Eo, Chang-Jin;Baek, Soo-Hyun;Kim, Yong;Kim, Il-Nam;Yoon, Shin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.406-408
    • /
    • 1999
  • In order to reduce the overall size and cost, researchers attempted to integrate the functions of power factor correction(PFC) and isolated dc-dc conversion into single power stage. However, single-stage isolated PFC converters have higher voltage stress and heavier loss when compared with a normal dc-dc converters. In this paper, we propose to add active clamping circuit to keep the switch voltage stress low and to achieve soft switching of electronic devices.

  • PDF