• Title/Summary/Keyword: Active circuit

Search Result 1,002, Processing Time 0.032 seconds

Full CMOS PLC SoC ASIC with Integrated AFE (Analog Frond-End 내장형 전력선 통신용 CMOS SoC ASIC)

  • Nam, Chul;Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.31-39
    • /
    • 2009
  • This paper presents the single supply power line communication(PLC) SoC ASIC with built-in analog frond-end circuit. To achieve the low power consumption along with low chip cost, this PLC SoC ASIC employs fully CMOS analog front-end(AFE) and several built-in Regulators(LDOs) powering for Core logic, ADC, DAC and IP Pad driver. The AFE includes RX of pre-amplifier, Programmable gain amplifier and 10 bit ADC and TX of 10bit Digital Analog Converter and Line driver. This PLC Soc was implemented with 0.18um 1 Poly 5 Metal CMOS process. The single power supply of 3.3V is required for the internal LDOs. The total power consumption is below 30mA at standby and 300mA at active which meets the eco-design requirement. The chips size is $3.686\;{\times}\;2.633\;mm^2$.

A Clock and Data Recovery Circuit using Quarter-Rate Technique (1/4-레이트 기법을 이용한 클록 데이터 복원 회로)

  • Jeong, Il-Do;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.130-134
    • /
    • 2008
  • This paper presents a clock and data recovery(CDR) using a quarter-rate technique. The proposed CDR helps reduce the VCO frequency and is thus advantageous for high speed application. It can achieve a low jitter operation and extend the pull-in range without a reference clock. The CDR consists of a quarter-rate bang-bang type phase detector(PD) quarter-rate frequency detector(QRFD), two charge pumps circuits(CPs), low pass filter(LPF) and a ring voltage controlled oscillator(VCO). The Proposed CDR has been fabricated in a standard $0.18{\mu}m$ 1P6M CMOS technology. It occupies an active area $1{\times}1mm^2$ and consumes 98 mW from a single 1.8 V supply.

65 nm CMOS Base Band Filter for 77 GHz Automotive Radar Compensating Path Loss Difference (경로 손실 변화의 보상이 가능한 77 GHz 차량용 레이더 시스템을 위한 65 nm CMOS 베이스밴드 필터)

  • Kim, Young-Sik;Lee, Seung-Jun;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1151-1156
    • /
    • 2012
  • In this paper, the baseband filter is proposed in order to maintain a constant sensitivity regardless of distances for 77 GHz automotive radar system. Using existing DCOC loop circuit can remove DC offset and also cancel differences of received power depending on the distance. Measured results show that the maximum gain is 51 dB and high pass cutoff frequency can be tuned from 5 kHz to 15 kHz. The slope of high pass filter can be tuned from -10 to -40 dB/decade for the distance compensation. The measured NF and IIP3 are 26 dB and +4.5 dBm with 4.3 mA at 1.0 V supply voltage, respectively. The fabricated die size $500{\mu}m{\times}1,050{\mu}m$ excluding the in/out pads.

A Design of 10 bit Current Output Type Digital-to-Analog Converter (10-비트 전류출력형 디지털-아날로그 변환기의 설계)

  • Gyoun Gi-Hyub;Kim Tae-Min;Shin Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1073-1081
    • /
    • 2005
  • This paper describes a 3.3 V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method. Most of Dfh converters with hiか speed current drive are an architecture choosing current switch cell, column, row decoding method but this decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. The designed D/A converter with an active chip area of $0.953\;mm^2$ is fabricated by using a 0.35um process. The simulation data shows that the rise/fall time, settling time, and INL/DNL are 1.92/2.1 ns, 12.71 ns, and a less than ${\pm}2.3/{\pm}58$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3 V is about 224 mW.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

A Study on the Development of Active Fast RFID tag Detection and Collision Prevention System (능동형 고속 RFID 태그 감지 및 충돌 예방 시스템 개발에 관한 연구)

  • Hong, Yeon Chan;Lee, Tae Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.747-754
    • /
    • 2013
  • This paper proposed a new transponder detection method to reduce tag recognition time and simplify anti-collision process in RFID systems. In conventional systems, a transponder in detectable area is passively recognized by responding to a reader command. In addition, if there are multiple tags in the area, a collision between tags occurs by responding at the same time to a command and anti-collision process begins. In the proposed method, tags are actively recognized without any command from a reader which results to reducing a tag recognition time and simplifying anti-collision process. To compare transponder recognition time, the process of transponder recognition in conventional systems is analysed. A circuit to detect transponder directly is developed and antenna voltage variation of a reader in the appearance of multiple transponders is analysed for the implementation of the proposed method.

Effect of N-ethylmaleimide(NEM) on $Na^+$ Transport Across the Frog Skin (N-ethylmaleimide(NEM)가 개구리 피부의 $Na^+$ 이동에 미치는 영향)

  • Song, Sun-Ok;Jung, Noh-Pal;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.13-22
    • /
    • 1979
  • Studies have been conducted using isolated surviving skin of Rana temporalia in an attempt to evaluate the effect of N-ethylmaleimide (NEM) on the epithelial $Na^+$ transport. Active transport of $Na^+$ across the skin was estimated by measuring short circuit current (SCC). NEM administered to the outside surface of the skin in concentration of $0.5{\times}10^{-4}-2.5{\times}10^{-4}M$ induced $20{\sim}40%$ increase during the first 30 mintues, followed by a gradual reduction in SCC. With NEM above $4{\times}10^{-4}M$, SCC was inhibited from the beginning. Qualitatively similar results were obtained when NEM was added to the inside bathing medium. However, the concentration of NEM for a similar effect was much higher with the drug in the inside bathing medium than in the outside bathing medium. The oxygen consumption of the skin was inhibited by NEM of above $10^{-4}M$, the effect being of approximately the same magnitude as that on SCC. The activity of $Na^+-K^+$ ATPase of the skin was not inhibited by NEM below $10^{-3}M$, but it was dramatically reduced with $1.2{\times}M$ NEM. The effects of NEM $(10^{-4}M)$ on the SCC and oxygen consumption could be eliminated by adding cysteine $(10^{-4}-10^{-3}M)$ in the medium, indicating that the SH group is involved in the action of NEM in the frog skin. On the basis of these results, the mode of action of NEM on the $Na^+$ transport across the frog skin was discussed.

  • PDF

Implementation of Static Address-Internetworking Scheme between Wireless Sensor Network and Internet (센서 네트워크와 인터넷과의 정적 주소 연동 방안 구현)

  • Kim, Jeong-Hee;Kwon, Hoon;Kwak, Ho-Young;Do, Yang-Hoi;Byun, Yung-Cheol;Kim, Do-Hyeun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.40-49
    • /
    • 2006
  • As a promising integrated circuit, wireless communication and micro-computing technology, the technology of sensor network that will lead the information technology industries of the next generation and realize the ubiquitous computing is one of the most active research topics and its research activities are also making today. From now on, each node, the network formation, and even the sensor network itself will interact with the generic network and evolve dynamically according to environmental changes in a process of continual creation and extinction. Therefore, address-internetworking between sensor network and generic network which are used different address mechanism is required. In this paper, we propose a static address-internetworking scheme for interactive networking between a sensor network and the Internet. The proposed scheme that possess a gateway approach to perform the protocol translation from one protocol to another, an overlay approach to constructs an overlay network on the WSNs and enables static internetworking between a sensor network address scheme based on Zigbee and the Internet address scheme based on the Internet Protocol. In addition, we verify the proposed scheme by an interconnection experiment.

  • PDF

Fuzzy-Neuro Controller for Speed of Slip Energy Recovery and Active Power Filter Compensator

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.480-480
    • /
    • 2000
  • In this paper, we proposed a fuzzy-neuro controller to control the speed of wound rotor induction motor with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. Control speed by adjusting resistance value in the rotor circuit that occurs the efficiency of power are reduced, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor. Recently, the emergence of artificial neural networks has made it conductive to integrate fuzzy controllers and neural models for the development of fuzzy control systems, Fuzzy-neuro controller has been designed by integrating two neural network models with a basic fuzzy logic controller. Using the back propagation algorithm, the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the control speed of a wound rotor induction motor process. The control system is designed to maintain efficiency of motor and compensate power factor of system. That is: the proposed controller gives the controlled system by keeping the speed constant and the good transient response without overshoot can be obtained.

  • PDF