• Title/Summary/Keyword: Active Vibration Isolation

Search Result 93, Processing Time 0.036 seconds

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.65-70
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological (MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

  • PDF

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee;Woo, Je-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

Performance Evaluation of Hybrid Vibration Isolator using FxLMS algorithm (FxLMS 알고리즘을 적용한 하이브리드 미소진동 절연장치의 절연성능 평가)

  • Lee, Dae-Oen;Park, Geeyong;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.173-174
    • /
    • 2014
  • Vibration disturbances generated by reaction wheels may cause serious problems in high precision pointing spacecraft missions. Implementation of vibration isolator is a practical solution to meet the high pointing stability requirement placed on precision payloads. In this paper, development of hybrid vibration isolator that combines passive and active component is described. Vibration isolation performance of the developed isolator is evaluated using reaction wheel disturbance model. Hybrid isolation results obtained using FxLMS algorithm show clear improvement compared to the results obtained using only passive means.

  • PDF

Active vibration isolation of a hydraulic system using the hetero-synaptic neural network (헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

Development of the Passive-Active Vibration Absorber Using Piezoelectric Actuators (수동-능동 압전형 진동흡수장치의 개발)

  • Kwak, Myung-Hoon;Heo, Seok;Kwak, Moon-K
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.308-312
    • /
    • 2001
  • This research is concerned with development of the passive-active vibration absorber using piezoelectric actuators. This active-passive isolation system consists of 4-pairs of PZT actuators bonded on accordion type of mounting bracket and a spring-damper located in center. Hence, the active system is connected in parallel to the passive system. In this paper, we discuss the dynamic characteristics of the addressed system. Based on the series of experiment, it is found that the proposed system can cope with the external disturbances. The controller design is currently under investigation.

  • PDF

Development and Application of Educational Equipment for Vibration Engineering (진동공학 교육장비 개발 및 적용)

  • Rim, Kyung-Hwa;Yang, Xun
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.1 no.1
    • /
    • pp.61-65
    • /
    • 2009
  • Due to the less variety of experiment equipments for engineering education, the development of designated educational equipment is really in urgent need at most time. Especially for the in-depth engineering major subject, vibration engineering, there are almost no related educational equipments in Korea. Accordingly, in order to simulate the vibration phenomena occurred in the actual field, the development of educational equipment for vibration engineering theory and experiment education is required. This paper introduces four development educational equipments developed in graduated research works, which are critical speed test educational equipment, balancing machine educational equipment, isolation educational equipment using eddy current and active vibration isolation educational equipment. Through using them in experiment lesson, the utilization and practicality of educational equipment are verified. The proposed improvement for future development and application of educational equipment is shown in addition.

  • PDF

Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table (공압제진대용 이중챔버형 공압스프링의 복소강성 모형화)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control (공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구)

  • Shin, Yun-Ho;Oh, Ki-Yong;Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.72-79
    • /
    • 2007
  • As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the tine delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.