• Title/Summary/Keyword: Active Switch

Search Result 315, Processing Time 0.023 seconds

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.

A New Hybird Control Scheme Using Active-Clamped Class-E Inverter with Induction Heating Jar for High Power Applications

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a new hybrid control scheme using Active-Clamped Class-E(ACCE) inverter for the Induction Heating (IH) jar. The proposed hybrid control scheme has characteristics, which acts as class-E inverter at lower switch voltage and ACCE inverter at higher switch voltage than reference voltage of the main switch by feeding back voltage of the switch. The proposedv hybrid control scheme also has advantage of conventional ACCE inverter such as Zero-Voltage-Switch(ZVS) of the main switch and the reduced switch voltage due to clamping cricuit. Moreover, the proposed hybrid control method using ACCE inverter has higher output power than convenional control scheme since ACCE inverter operates like class-E inverter at low input voltage condition. The principles of the proposed control are explained in detail and the validity of the proposed control scheme is verifed through the several interesting simulated and experimental results.

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.

Implementation of High Speed Router's Redundancy Architecture (고속 네트워크 시스템의 이중화 회로 구현)

  • 강덕기;이상우;이준철;이형섭;이영천
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.267-270
    • /
    • 2000
  • In this paper, we consider the simple redundant structures with the function of hardware based active/standby control. The system includes two switch modules. The switch module is connected to a data bus, but only the active switch module has control of the data bus. The standby unit takes over the function of the active unit when the active unit failure or mode command are asserted. And this paper illustrate the high-speed router system and the overall redundant system architecture. The proposed redundant architecture for 80G Router system is verified and implemented with experiment.

  • PDF

A 60GHz Active Phase Shifter with 65nm CMOS Switching-Amplifiers (65nm CMOS 스위칭-증폭기를 이용한 60GHz 능동위상변화기 설계)

  • Choi, Seung-Ho;Lee, Kook-Joo;Choi, Jung-Han;Kim, Moon-Il
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.232-235
    • /
    • 2010
  • A 60GHz active phase shifter with 65nm CMOS is presented by replacing passive switches in switched-line type phase shifter with active ones. Active-switch phase shifter is composed of active-switch blocks and passive delay network blocks. The active-switch phase shifter design is compact compare with the conventional vector-sum phase shifter. Active-switch blocks are designed to accomplish required input and output impedances whose requirements are different whether the switch is on or off. And passive delay network blocks are composed of lumped L,C instead of normal microstrip line to reduce the size of the circuit. An 1-bit phase shifter is fabricated by TSMC 65nm CMOS technology and measurement results present -4dB average insertion loss and 120 degree phase shift at 65GHz.

Characterization of Active Pixel Switch Readout Circuit by SPICE Simulation (능동픽셀센서 구동회로의 SPICE 모사 분석)

  • Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.49-52
    • /
    • 2007
  • Characteristics of an active pixel switch readout circuit were studied by SPICE simulation. A simple readout circuit consists of an operation amplifier, a diode, and a down-counter was suggested, and its successful operation was verified by showing that the differences in the detected signal intensity are accordingly converted to modulation of the voltage pulses generated by the comparator. A scheme to use these pulses to generate the original image was also put forward.

  • PDF

A Self-Driven Active Clamp Forward Converter Using the Auxiliary Winding of the Power Transformer (변압기 보조권선을 이용한 자기 구동 능동 클램프 포워드 컨버터)

  • 이광운;임범선;김희준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.350-354
    • /
    • 2003
  • This study proposes a new self-driven active clamp forward converter eliminating the extra drive circuit for the active clamp switch. The converter used the auxiliary winding of the power transformer to drive the active clamp switch and a simple R-C circuit to get the dead time between the two switches. The operation principle was presented and experimental results were used to verify theoretical predictions. A 100-W (5V/20A) prototype converter built that only exhibited 1.5-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input of 50V. Finally, the measured efficiency of the converter was presented and the maximum efficiency of 91% was obtained.

A Study on a Boost-Input Self-Driven Active Clamp ZVS Converter (자기구동 능동 클램프를 이용한 부스트 입력형 ZVS 컨버터에 관한 연구)

  • Jin, Ho-Sang;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.781-788
    • /
    • 2011
  • This paper proposes a boost-input self-driven active clamp ZVS converter eliminating the extra dirve circuit for the active clamp switch. The converter used the auxiliary winding of the transformer to drive the active clamp switch and to achieve asymmetrical duty control. This paper presents the operation principle and the analyzed results of dynamic characteristics including steady state characteristics of the converter proposed. The experimental results were used to verify the theoretical predictions. A 300W (15V/20A) prototype converter that only exhibited 2-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input voltage of 80V. Finally, the maximum efficiency of 91.2% was achieved for the prototype converter and the proposed converter had stable closed loop characteristic with phase margin $55^{\circ}$.

Active-clamp Class-E High Frequency Resonant Inverter with Single-st (단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터)

  • Kang, Jin-Wook;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Sim, Kwang-Yeal;Le, Bong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

A Novel Boost PFC Converter Employing ZVS Based Compound Active Clamping Technique with EMI Filter

  • Mohan, P. Ram;Kumar, M. Vijaya;Reddy, O.V. Raghava
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • A Boost Power Factor Correction (PFC) Converter employing Zero Voltage Switching (ZVS) based Compound Active Clamping (CAC) technique is presented in this paper. An Electro Magnetic Interference (EMI) Filer is connected at the line side of the proposed converter to suppress Electro Magnetic Interference. The proposed converter can effectively reduce the losses caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft switching i.e. ZVS under certain condition. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation, design and simulation results are presented here. A prototype of the proposed converter is built and tested for low input voltage i.e. 15V AC supply and the experimental results are obtained. The power factor at the line side of the converter and the converter efficiency are improved using the proposed technique.