• Title/Summary/Keyword: Active Calibration

Search Result 135, Processing Time 0.034 seconds

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

Array Error Analysis and Correction of Active Array Antenna for AESA Radar (AESA 레이더 능동위상배열 안테나의 배열오차 분석 및 보정)

  • Lee, YuRi;Kim, JongPil;Kang, Yeonduk;Kim, SunJoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.414-423
    • /
    • 2015
  • Array error analysis and correction of active array antenna are described in this paper. Array elements composed of radiator and TR(Transmit & Recive) module have error(magnitude and phase difference among array elements) which affects SLL(Side Lobe Level). Error affectedness level depends on ideal SLL according to antenna aperture weighting, number of array elements and antenna effective aperture. To satisfy required SLL, correction of array elements is necessary; adopted differently per errors, and weighted differently per shapes of antenna and required SLL. Errors of every individual element had been defined, performance of the antenna with or without error correction had been estimated and proved through near field test.

SUNSPOTS AND THEIR ASSOCIATED SOLAR ACTIVITIES I. PHYSICAL CHARACTERISTICS OF A WHITE LIGHT FLARE

  • LEE SANG-WOO;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.77-87
    • /
    • 1995
  • An attempt has been made to analyze time series of $H_\alpha,\;H_\beta,\;and\; H_\gamma$ line profiles taken from a 3B/X6.1 flare which occurred on Oct. 27, 1991 in an active region, NOAA 6891. A total of 22 sets of $H_\alpha,\;H_\beta,\;and\; H_\gamma$ taken with a low and non-uniform time resolution of 10-40 seconds were scanned by PDS with absolute intensity calibration to derive the physical characteristics of the material in the flare chromosphere. Our . results are as follows: (1) The lower Balmer lines observed during the flare activity are broadened by Stark effect. (2) At the peak of the flare activity, the electron temperature of the Balmer line emitting region reaches up to 35000K and its geometrical thickness increases to a scale of $10^4km$, suggesting that high energy particles penetrate deep into the photospheric level.

  • PDF

A 6-bit 3.3GS/s Current-Steering DAC with Stacked Unit Cell Structure

  • Kim, Si-Nai;Kim, Wan;Lee, Chang-Kyo;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.270-277
    • /
    • 2012
  • This paper presents a new DAC design strategy to achieve a wideband dynamic linearity by increasing the bandwidth of the output impedance. In order to reduce the dominant parasitic capacitance of the conventional matrix structure, all the cells associated with a unit current source and its control are stacked in a single column very closely (stacked unit cell structure). To further reduce the parasitic capacitance, the size of the unit current source is considerably reduced at the sacrifice of matching yield. The degraded matching of the current sources is compensated for by a self-calibration. A prototype 6-bit 3.3-GS/s current-steering full binary DAC was fabricated in a 1P9M 90 nm CMOS process. The DAC shows an SFDR of 36.4 dB at 3.3 GS/s Nyquist input signal. The active area of the DAC occupies only $0.0546mm^2$ (0.21 mm ${\times}$ 0.26 mm).

Illumination Invariant Ranging Sensor Based on Structured Light Image (조명잡음에 강인한 구조광 영상기반 거리측정 센서)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.122-130
    • /
    • 2010
  • This paper presents an active ranging system based on laser structured-light image. The structured-light image processing is computationally efficient in comparison with the conventional stereo image processing, since the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise, an efficient image processing algorithm, i.e., integration of difference images with structured-light modulation is proposed. Distance equation from the measured structured light pixel distance and system parameter calibration are addressed in this paper. Experiments and analysis are carried out to verify performance of the proposed ranging system.

Electrical Power and Energy Reference Measurement System with Asynchronous Sampling (비동기 샘플링에 의한 전력과 에너지 측정 기준시스템)

  • Wijesinghe, W.M.S.;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.684_685
    • /
    • 2009
  • A digital sampling algorithm that uses a two high resolution integrating Voltmeters which are synchronized by Phase Lock Loop (PLL) time clock for accurately measuring the parameters, active and reactive power, for sinusoidal power measurements is presented. The PLL technique provides high precision measurements, root mean square (rms), phase and complex voltage ratio, of the AC signal. The system has been designed to be used at the Korean Research Institute of Standards and Science (KRISS) as a reference power standard for electrical power calibrations. The test results have shown that the accuracy of the measurements is better than $10 {\mu}W/VA$ and the level of uncertainty is valid for the power factor range zero to 1 for both lead and lag conditions. The system is fully automated and allows power measurements and calibration of high precision wattmeters and power calibrators at the main power frequencies 50 and 60 Hz.

  • PDF

Source-Follower Type Analog Buffer Using Low Temperature Poly-Si TFTs for AMLCDs

  • Chen, Bo-Ting;Tai, Ya-Hsiang;Wei, Ying-Jyun;Tsai, Chun-Chien;Chen, Hsu-Hsin;Huang, Chun-Yao;Kuo, Yu-Ju;Cheng, Huang-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1243-1246
    • /
    • 2006
  • A new source follower circuit for the integrated circuit of AMLCDs is proposed. Active load is added and calibration operation is applied to compensate the circuits. Proposed circuit is capable of minimizing the variation from both timing and device variations through measured results, the uniformity and bias effect are discussed.

  • PDF

Analysis of the Required Limit on APAA Aperture using Statistical Simulation for HAPS

  • Ku, Bon-Jun;Park, Jong-Min;Kim, Yang-Su;Ahn, Do-Seob
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1335-1338
    • /
    • 2002
  • This paper presents the analysis of the required limit on a multibeam active phased array antenna (APAA) aperture using the statistical simulation for a High Altitude Platform Station (HAPS). The simulation takes into account the random errors caused by the non-identity of the array elements and the inaccuracy of the antenna calibration. The results of our statistical simulation show that the strict requirements on the sidelobe envelope for HAPSs can be met when the amplitude and phase distribution errors are minor, a condition which may be achieved by using digital beam forming.

  • PDF

Harnessing sparsity in lamb wave-based damage detection for beams

  • Sen, Debarshi;Nagarajaiah, Satish;Gopalakrishnan, S.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.381-396
    • /
    • 2017
  • Structural health monitoring (SHM) is a necessity for reliable and efficient functioning of engineering systems. Damage detection (DD) is a crucial component of any SHM system. Lamb waves are a popular means to DD owing to their sensitivity to small damages over a substantial length. This typically involves an active sensing paradigm in a pitch-catch setting, that involves two piezo-sensors, a transmitter and a receiver. In this paper, we propose a data-intensive DD approach for beam structures using high frequency signals acquired from beams in a pitch-catch setting. The key idea is to develop a statistical learning-based approach, that harnesses the inherent sparsity in the problem. The proposed approach performs damage detection, localization in beams. In addition, quantification is possible too with prior calibration. We demonstrate numerically that the proposed approach achieves 100% accuracy in detection and localization even with a signal to noise ratio of 25 dB.