• Title/Summary/Keyword: Activated sintering

Search Result 86, Processing Time 0.026 seconds

Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2015
  • $TiH_2$ nanopowder was made by high energy ball milling. The milled $TiH_2$ and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the $TiH_2$-CNT mixture produced a Ti-TiC composite according to the reaction ($0.92TiH_2+0.08CNT{\rightarrow}0.84Ti+0.08TiC+0.92H_2$, $0.84TiH_2+0.16CNT{\rightarrow}0.68Ti+0.16TiC+0.84H_2$). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.

Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials (통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성)

  • Woo, Kee Do;Kang, Duck Soo;Kwon, Eui Pyo;Moon, Min Seok;Shon, In Jin;Liu, Zhiguang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.508-515
    • /
    • 2009
  • Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.

Fabrication and Mechanical Properties of a Nanostructured TiN-AlN Composite by Pulsed Current Activated Sintering (펄스전류활성 소결에 의한 나노구조 TiN-AlN 복합재료 제조 및 기계적 특성)

  • Kim, Wonbaek;Suh, Chang-Yul;Roh, Ki-Min;Lim, Jae-Won;Shim, Hyun-Bo;Park, Hyun-Kuk;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.861-866
    • /
    • 2012
  • A dense nanostructured TiN-AlN composite was prepared from high-energy ball milled TiN-AlN mixture powders by pulsed current activated sintering (PCAS). A highly dense TiN-AlN bulk composite was obtained within 2 minutes at $1500^{\circ}C$ with the simultaneous application of 80 MPa pressure and pulsed current. The fine crystalline structure of the TiN-AlN mixture, which was obtained by high-energy milling, was effectively maintained during PCAS and resulted in the enhancement of the mechanical properties. The micro hardness and fracture toughness of TiN-AlN composite were $1780kg/mm^2$ and $5MPa.m^{1/2}$, respectively. The mechanical properties were higher than monolithic AlN or TiN.

Mechanical Properties and Fabrication of Nanostructured Ti3Al-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering (기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 Ti3Al-Al2O3 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Wang, Hee-Ji;Suh, Chang-Yul;Cho, Sung-Wook;Kim, Wonbaek
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.374-379
    • /
    • 2011
  • Nano-powders of $Ti_3Al$ and $2Al_2O_3$ were synthesized from $3TiO_2$ and 5Al powders by high energy ball milling. A nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and $Ti_3Al$. Nanocrystalline materials, have received much attention as advanced engineering materials due to their improved physical and mechanical properties. The relative density of the composite was 99.5%. The average obtained hardness and fracture toughness values were 1510 kg/$mm^2$ and $9\;MPa{\cdot}m^{1/2}$, respectively.

Mechanical Properties and Fabrication of Nanostructured 1.5TiAl-Al2O3 Composite by Pulsed Current Activated Sintering (기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 1.5TiAl-Al2O3 복합재료 제조 및 기계적 특성)

  • Kim, Won-Baek;Wang, Hee-Ji;Roh, Ki-Min;Cho, Sung-Wook;Lim, Jae-Won;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.310-315
    • /
    • 2012
  • Nano-powders of 1.5TiAl and $Al_2O_3$ were synthesized from $1.5TiO_2$ and 3Al powders by high energy ball milling. Nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and 1.5TiAl. The relative density of the composite was 99.5%. The average hardness and fracture toughness values obtained were $1250kg/mm^2$ and $10MPa{\cdot}m^{1/2}$, respectively.

Fabrication of Porous Alumina Mold for the Casting Process of Fine Ceramics (Fine Ceramics의 Casting공정을 위한 다공질 알루미나 몰드의 제조)

  • 박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.89-96
    • /
    • 1999
  • Manufacturing conditions of the porous alumina mold were established to overcome various limits of the gypsum mold. For the preparations of the porous alumina mold, an activated charcoal was added to the Al2O3 with the wt% variation and then mixed. The binary slurry was study dispersed based on the examination of the ESA and rheological behaviro. The cylinder type alumina mold was cast in the gyspum mold and characterized by the shrinkage rate at the variable sintering temperature and the resistance against wear. It was proper to make a sintering of the Al2O3 by the surface diffusion which was non-shrinkage sintering mechansim, and intergranular neck growed stronger while sintering was being made. We studied a sintering by three categories; 1) thermodynamic method below 1,000$^{\circ}C$, 2) kinetic method above 1,000$^{\circ}C$ and 3) combined method. In the results of the respective works, combined method was superiro to the others. The prepared Al2O3 mold had relatively high strength, low drying rate, the resistance against the acid or base and good casting behavior.

  • PDF

Evaluation of Properties and Fabrication of Tubular Supports Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 SOFC 관형 세라믹 지지체의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.214-219
    • /
    • 2010
  • In this study, we fabricated tubular ceramic support for segmented-in-series solid oxide fuel cell (SOFC) by using CSZ(CaO-stabilized $ZrO_2$) as main material and activated carbon as pore former. Thermal expansion properties of ceramic support with different amounts of activated carbon were analyzed by using dilatometer to decide a suitable sintering temperature. The tubular ceramic supports with different amounts of activated carbon (5, 10, 15wt.%) were fabricated by the extrusion technique. After sintering at $1100^{\circ}C$ and $1400^{\circ}C$ for 5h., cross section and surface morphology of tubular ceramic support were analyzed by using SEM image. Also, the porosity, mechanical property, gas permeability of tubular ceramic supports was measured. Based on these results, we established the suitable fabrication technique of tubular ceramic support for segmented-in-series SOFC.

Mechanical Properties and Fabrication of WC-Co Hard Materials by Rapid Sintering Method for Friction Stir Welding Tool Application (급속소결 방법을 이용한 마찰교반 접합 툴용 WC-Co 소결체 제조 및 특성 평가)

  • Park, Hyun-Kuk;Youn, Hee-Jun;Ryu, Jung-Han;Jang, Jun-Ho;Shon, In-Jin;Oh, Ik-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • Using the pulsed current activated sintering method, the WC-10wt.% Co materials were densified using a WC and Co powder. The WC-Co almost completely dense with a relative density of up to 99.5 % after the simultaneous application of a pressure of 60 MPa and an electric current for 3 minutes almost without any significant change in the grain size. The average grain size of about $0.3{\mu}m$. The hardness and fracture toughness at $1000^{\circ}C$ were about $2200kg/mm^2$ and $9.8MPa.m^{1/2}$, respectively.

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties

  • Kang, Hyun-Su;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.180-185
    • /
    • 2014
  • The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.

Simultaneous Synthesis and Rapid Consolidation of Nanostructured (Ti,Mo)C and Its Mechanical Properties (펄스전류 가열에 의한 나노구조의 (Ti,Mo)C 합성과 동시 급속소결 및 기계적 성질)

  • Jo, Hyoung-Gon;Kwon, Hanjung;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.620-624
    • /
    • 2013
  • Nanocrystalline materials have recently received significant attention in the area of advanced materials engineering due to their improved physical and mechanical properties. A solid-solution nanocrystalline powder, (Ti,Mo)C, was prepared via high-energy milling of Ti-Mo alloys with graphite. Using XRD data, the synthesis process was investigated in terms of the phase evolution. Rapid sintering of nanostuctured (Ti,Mo)C hard materials was performed using a pulsed current activated sintering process (PCAS). This process allows quick densification to near theoretical density and inhibits grain growth. A dense, nanostructured (Ti,Mo)C hard material with a relative density of up to 96 % was produced by simultaneous application of 80 MPa and a pulsed current for 2 min. The average grain size of the (Ti,Mo)C was lower than 150 nm. The hardness and fracture toughness of the dense (Ti,Mo)C produced by PCAS were also evaluated. The fracture toughness of the (Ti,Mo)C was higher than that of TiC.