Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.5.374

Mechanical Properties and Fabrication of Nanostructured Ti3Al-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering  

Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Wang, Hee-Ji (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Suh, Chang-Yul (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Kim, Wonbaek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Publication Information
Korean Journal of Metals and Materials / v.49, no.5, 2011 , pp. 374-379 More about this Journal
Abstract
Nano-powders of $Ti_3Al$ and $2Al_2O_3$ were synthesized from $3TiO_2$ and 5Al powders by high energy ball milling. A nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and $Ti_3Al$. Nanocrystalline materials, have received much attention as advanced engineering materials due to their improved physical and mechanical properties. The relative density of the composite was 99.5%. The average obtained hardness and fracture toughness values were 1510 kg/$mm^2$ and $9\;MPa{\cdot}m^{1/2}$, respectively.
Keywords
compound; nanostructure; sintering; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Wu X. Intermetallics 14, 1114 (2006).   DOI   ScienceOn
2 S. Djanarthany, J.-C. Viala, and J. Bouix, Materials Chemistry and Physics 72, 301 (2001).   DOI   ScienceOn
3 S.-L. Xiao, J. Tian, L.-J. Xu, Y.-Y. Chen, H.-B. Yu, and J.-C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009).   DOI   ScienceOn
4 D.Y. Oh, H. C. Kim, J.K. Yoon, and I.J. Shon, J. Alloys & Compounds 395, 174 (2005).   DOI   ScienceOn
5 Z.W. Li, W. Gao, D.L. Zhang, and Z.H. Cai, Corrosion Science 46, 1997 (2004).   DOI   ScienceOn
6 M.F. Ashby and D.R.H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology, Vol.34), Pergamon Press, Oxford, 1986.
7 J. Karch, R. Birringer, and H. Gleiter. Nature 330 (1987).
8 A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413 (2001).
9 D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI   ScienceOn
10 Z. Fang and J.W. Eason, Int. J. Refrac. 297 (1995).
11 A.I.Y. Tok, I.H. Luo, and F.Y.C. Boey, J. Mate. Sci. Eng. A 229 (2004).
12 I. Y. Ko, S. M. Chae and I. J. Shon, Kor. J. Met. Mater. 48, 417 (2010).   DOI   ScienceOn
13 N.R. Park. M.K. Choe, J,S, Park. W. Kim, and I.J. Shon, Met. Mater. Inst. 15, 765 (2009).   DOI   ScienceOn
14 C.Suryanarayana, M.Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
15 O.Knacke, O.Kubaschewski, K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
16 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI   ScienceOn
17 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI   ScienceOn
18 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).   DOI   ScienceOn
19 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI   ScienceOn
20 G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).   DOI
21 C.M. Ward-Close, R. Minor, and P.J. Doorbar, Intermetallics 4, 217 (1996).   DOI   ScienceOn