Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.4.310

Mechanical Properties and Fabrication of Nanostructured 1.5TiAl-Al2O3 Composite by Pulsed Current Activated Sintering  

Kim, Won-Baek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Wang, Hee-Ji (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Roh, Ki-Min (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Lim, Jae-Won (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources)
Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.4, 2012 , pp. 310-315 More about this Journal
Abstract
Nano-powders of 1.5TiAl and $Al_2O_3$ were synthesized from $1.5TiO_2$ and 3Al powders by high energy ball milling. Nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and 1.5TiAl. The relative density of the composite was 99.5%. The average hardness and fracture toughness values obtained were $1250kg/mm^2$ and $10MPa{\cdot}m^{1/2}$, respectively.
Keywords
compound; nanostructure; sintering; mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu X. Intermetallics 14, 1114 (2006).   DOI   ScienceOn
2 Ai Taotao, Chinese Journal of Aeronautics 21, 559 (2008).   DOI   ScienceOn
3 S. L. Xiao, J. Tian, L. J. Xu, Y. Y. Chen, H. B. Yu, and J. C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009).   DOI   ScienceOn
4 D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compounds 395, 174 (2005).   DOI   ScienceOn
5 Z. W. Li, W. Gao, D. L. Zhang, and Z. H. Cai, Corros. Sci. 46, 1997 (2004).   DOI   ScienceOn
6 M. F. Ashby and D. R. H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology), Vol. 34, Pergamon Press, Oxford, (1986).
7 J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).   DOI   ScienceOn
8 A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001).   DOI   ScienceOn
9 D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI   ScienceOn
10 Z. Fang and J.W. Eason, Int. J. Refrac. 13, 297 (1995).   DOI   ScienceOn
11 A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004).   DOI   ScienceOn
12 S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean. J. Met. Mater. 49, 231 (2011).   DOI   ScienceOn
13 H. S. Kang, I. Y. Ko, J. K.Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011).   DOI   ScienceOn
14 C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
15 O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
16 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI   ScienceOn
17 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI   ScienceOn
18 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).   DOI   ScienceOn
19 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI   ScienceOn
20 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).   DOI
21 O. Yeheskel and M. P. Dariel, Mater. Sci. Eng. A 354, 344 (2003).   DOI   ScienceOn