통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성

Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials

  • 우기도 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 강덕수 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 권의표 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • 문민석 (전북대학교 수소연료전지 특성화 대학원) ;
  • 손인진 (전북대학교 공과대학 신소재공학부, 공업기술연구센터) ;
  • Woo, Kee Do (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Kang, Duck Soo (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Kwon, Eui Pyo (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Moon, Min Seok (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Shon, In Jin (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Liu, Zhiguang (School of Materials Science and Engineering, Harbin Institute of Technology)
  • 투고 : 2009.04.28
  • 발행 : 2009.08.25

초록

Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.

키워드

과제정보

연구 과제 주관 기관 : 전북대학교, 하얼빈공업대학교

참고문헌

  1. Alireza Nouri, Xiaobo Chen, Yuncang Li, Yasuo Yamada, Peter D. Hodgson, Cui'e Wen, Mater. Sci. Eng. 485, 562(2008) https://doi.org/10.1016/j.msea.2007.10.010
  2. G. He, J. Eckert, Q. L. Dai, M. L. Sui, W. Loser, M. Hagiwara, and E. Ma, Biomater. 24, 5115 (2003) https://doi.org/10.1016/S0142-9612(03)00440-X
  3. Yoshimitsu Okazaki, Sethumadhvan Rao, Yoshimasa Ito, and Tetsuya Tateishi, Biomater. 19, 1197 (1998) https://doi.org/10.1016/S0142-9612(97)00235-4
  4. K. Wang, Mater. Sci. Eng. A213, 134 (1998) https://doi.org/10.1016/0921-5093(96)10243-4
  5. K. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon, and D. L. Zhang, Met. Mater. Int. 14, 327 (2008) https://doi.org/10.3365/met.mat.2008.06.327
  6. A. M. Omran, K. D. Woo, D. K. Kim, and S. W. Kim, Met. Mater. Int. 14, 321 (2008) https://doi.org/10.3365/met.mat.2008.06.321
  7. D. J. Lee, K. K. Lee, B. S. Park, K. M. Lee, and S. W. Park, J. Kor. Inst. Surf. Eng. 39, 43 (2006)
  8. Ying-Long Zhou and Mitsuo Niinomi, J. Alloys Comp. 466, 535 (2008) https://doi.org/10.1016/j.jallcom.2007.11.090
  9. S. E. Kim, H. W. Jeong, Y. T. Hyun, D. K. Lee, Y. T. Lee, J. K. Park, and J. H. Lee, J. Kor. Inst. Met. & Mater. 44, 462(2006)
  10. A. Rapacz-Kmita, A. Slosarczyk, and Z. Paszkiewicz, J. Europ. Ceram. Soc. 26, 1481 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.01.059
  11. C. Q. Ning and Y. Zhou, Biomater. 25, 3379 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.017
  12. Congqin Ning and Yu Zhou, Acta Biomater. 4, 1944 (2008) https://doi.org/10.1016/j.actbio.2008.04.015
  13. R. Narayanan, Sraboni Dutta, and S. K. Seshadri, Surf. Coat. Tech. 200, 4720 (2006) https://doi.org/10.1016/j.surfcoat.2005.04.040
  14. T. Peng, Q. D. Wang, M. P. Liu, J. Zheng, and J. B. Lin, Powder Tehc. 194, 142 (2009) https://doi.org/10.1016/j.powtec.2009.03.040
  15. A. Choubey, R. Balasubramaniam, and B. Basu, J. Alloys Comp. 381, 288 (2004) https://doi.org/10.1016/j.jallcom.2004.03.096
  16. Dj. Veljoviae, B. Jokiae, R. Petroviae, E. Palcevskis, A. Dindune, I. N. Mihailescu, and Dj. Janaaekoviae, Ceram. -int. (In press)
  17. Susmita Bose and Susanta Kumar Saha, J. Am. Ceram. Soc. 86, 1055 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03423.x
  18. C. Q. Ning and Y. Zhou, Biomater. 23, 2909 (2002) https://doi.org/10.1016/S0142-9612(01)00419-7
  19. Ruixue Sun, Musen Li, Yupeng Lu, and Xianghai An, Mater. Sci. Eng. 26, 28 (2006) https://doi.org/10.1016/j.msec.2005.05.003
  20. S. Y. Lee, S. H. Jang, C. M. Lee, J. H. Choi, J.-H. Joo, J. H. Lim, S. B. Jung, and K. Song, Kor, J. Mater Res. 17, 541(2007)
  21. Y. S. Tian, C. Z. Chen, L. B. Chen, and L. X. Chen, Appl. Surf. Sci. 253, 1499 (2006) https://doi.org/10.1016/j.apsusc.2006.02.026