DOI QR코드

DOI QR Code

Fabrication and Mechanical Properties of a Nanostructured TiN-AlN Composite by Pulsed Current Activated Sintering

펄스전류활성 소결에 의한 나노구조 TiN-AlN 복합재료 제조 및 기계적 특성

  • Kim, Wonbaek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Suh, Chang-Yul (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Roh, Ki-Min (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Lim, Jae-Won (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Shim, Hyun-Bo (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Park, Hyun-Kuk (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
  • 김원백 (한국지질자원연구원) ;
  • 서창열 (한국지질자원연구원) ;
  • 노기민 (한국지질자원연구원) ;
  • 임재원 (한국지질자원연구원) ;
  • 심현보 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 박현국 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발연구센터)
  • Received : 2012.03.29
  • Published : 2012.11.25

Abstract

A dense nanostructured TiN-AlN composite was prepared from high-energy ball milled TiN-AlN mixture powders by pulsed current activated sintering (PCAS). A highly dense TiN-AlN bulk composite was obtained within 2 minutes at $1500^{\circ}C$ with the simultaneous application of 80 MPa pressure and pulsed current. The fine crystalline structure of the TiN-AlN mixture, which was obtained by high-energy milling, was effectively maintained during PCAS and resulted in the enhancement of the mechanical properties. The micro hardness and fracture toughness of TiN-AlN composite were $1780kg/mm^2$ and $5MPa.m^{1/2}$, respectively. The mechanical properties were higher than monolithic AlN or TiN.

Keywords

Acknowledgement

Grant : 티타늄계 합금 스크랩의 불순물 제어 및 활용기술 개발

Supported by : 한국에너지기술평가원(KETEP)

References

  1. L. M. sheppard, Am. Ceram. Soc. Bull. 69, 1801 (1990).
  2. F. S. Liu, H. W. Dong, and Q. L. Liu, Opt. Mater. 28, 1029 (2006).
  3. X. Du, M. Qun, Y. Sun, Z. Yuan, B. Yang, and X. Qu, Adv. Powder Technol. 21, 431 (2001).
  4. L. Yin, L. Yang, W. Yang, Y. Guo, K. Ma, S. Li, and J. Zhang, Solid-state Electron. 52, 1520 (2010).
  5. Z. Shen, M. Johsson, and M. Nygren, J. Eur. Ceram. Soc. 23, 1061 (2003).
  6. X. Du, M. Qin, A. Rauf, Z. Yuan, B. Yang, and X. Qu, Mater. Sci. Eng. A 496, 269 (2008).
  7. W. Kim, J. S. Park, S. W. Cho, N. R. Kim, I. Y. Ko, and I. J. Shon, Journal of Ceramic Processing Research, 11, 627 (2010).
  8. Y. Ohya, M. J. Hoffmann, and G. Petzow, J. Am. Ceram. Soc. 75, 2479 (1992).
  9. S. K. Bhaumik, C. Divakar, A. K. Singh, and G. S. Upadhyaya, Mater. Sci. Eng. A 279, 275 (2000).
  10. N. R. Park, I. Y. Ko, J. K Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Int. 17, 233 (2011).
  11. H. Zhang, P. Chen, M. Wang, and X. Liu, Rare Metals 21, 304 (2002).
  12. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compounds 395, 174 (2005).
  13. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987).
  14. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001).
  15. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).
  16. F. B. Pickering, Physical metallurgy and the design of steels, p. 63. Applied science publishers ltd, London (1978).
  17. Z. Fang and J. W. Eason, Int. J. Refrac. 13, 297 (1995).
  18. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004).
  19. I. J. Shon, H. J. Wang, C. Y. Suh, S. W. Cho, and W. B. Kim, Korean J. Met. Mater. 49, 374 (2011).
  20. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Inst. 17, 57 (2011).
  21. W. B. Kim, N. R. Kim, I. Y. Ko, S. W. Cho, J. S. Park, and I. J. Shon, Met. Mater. Int. 17, 239 (2011).
  22. C. Suryanarayana and M. G. Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  23. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).
  24. J. E. Garay, U. A. Tamburini, Z. A. Munir, S. C. Glade, and P. A. Kumar, Appl. Phys. Lett. 85, 573 (2004).
  25. J. R. Friedman, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).
  26. J. E. Garay, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).
  27. X. Du, M. Qin, A. Radurf, Z. Yuan, B. Yang, X. Qu, Mater. Sci. Eng. A 496, 269 (2008).
  28. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  29. R. Terao, J. Tatami, and T. Meguro, J. Eur. Ceram. Soc. 22, 1051 (2002).