• Title/Summary/Keyword: Actinobacteria

Search Result 224, Processing Time 0.031 seconds

Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics

  • Tekaya, Seifeddine Ben;Tipayno, Sherlyn;Chandrasekaran, Murugesan;Yim, Woo-Jong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.593-601
    • /
    • 2012
  • Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to ${\alpha}$ Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.

Unrecorded bacterial species belonging to the phylum Actinobacteria originated from Republic of Korea

  • Kim, Mi-Sun;Lee, Ji-Hee;Kim, Seung-Bum;Cho, Jang-Cheon;Lee, Soon Dong;Joh, Ki-seong;Cha, Chang-Jun;Im, Wan-Taek;Bae, Jin-Woo;Jahng, Kwangyeop;Yi, Hana;Seong, Chi-Nam
    • Journal of Species Research
    • /
    • v.6 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • As a subset study for the collection of Korean indigenous prokaryotic species, 62 bacterial strains belonging to the phylum Actinobacteria were isolated from various sources. Each strain showed higher 16S rRNA gene sequence similarity (>98.75%) and formed a robust phylogenetic clade with closest species of the phylum Actinobacteria which were defined with valid names, already. There is no official description on these 62 actinobacterial species in Korea. Consequently, unrecorded 62 species of 25 genera in the 14 families belonging to the order Actinomycetales of the phylum Actinobacteria were found in Korea. Morphological properties, basic biochemical characteristics, isolation source and strain IDs are described in the species descriptions.

Report of 21 unrecorded bacterial species in Korea belonging to the phylum Actinobacteria, discovered during the survey in 2020

  • Ham, You Ju;Jeong, Ji Won;Im, Wan-Taek;Kim, Won-Yong;Yoon, Jeong-Hun;Kim, Myung Kyum;Seong, Chi Nam;Kim, Seung Bum
    • Journal of Species Research
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The phylum Actinobacteria includes many groups of aerobic, Gram-stain-positive, rod, or filamentous shaped bacteria. Actinobacteria are known for multicellular differentiation in some groups, and also for production of various secondary metabolites such as antibiotics. During a series of extensive surveys of indigenous prokaryotic species diversity in Korea, bacterial strains belonging to Actinobacteria were isolated from various sources of terrestrial environments. A total of 21 bacterial strains, belonging to 10 genera in 8 families, were isolated as unrecorded species in Korea. Among them, 11 were assigned to the family Streptomycetaceae, two species assigned to each of the families Microbacteriaceae, Mycobacteriaceae and Nocardioidaceae, and one species assigned to each of the families Euzebyaceae, Corynebacteriaceae, Micrococcaceae and Intrasporangiaceae. At the genus level, Streptomyces (10 species) was the most abundant, followed by Microbacterium and Mycolicibacterium(2 species each), and one species in each of the genera Corynebacterium, Euzebya, Arthrobacter, Terracoccus, Kribbella, Nocardioides and Yinghuangia. The detailed descriptions of each unrecorded species are provided.

Temporal and Spatial Distribution of Microbial Community and Odor Compounds in the Bukhan River System (북한강 수계 미소생물 군집 및 이취미 물질의 시공간적 분포 특성)

  • Byun, Jeong-Hwan;Yu, Mina;Lee, Eunjeong;Yoo, Soon-Ju;Kim, Baik-Ho;Byun, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.299-310
    • /
    • 2018
  • Odor compounds (geosmin, 2-MIB) have been causing problems in the Bukhan River system, but the causative organisms have not been clearly identified. To evaluate the relationship between dynamics of microbial community and odor compounds, two times monthly monitoring of water quality and microbial community from the three serial lakes (Lake Uiam, Lake Cheongpyeong and Lake Paldang) in the Bukhan River system were conducted from April to October 2017. The odor compounds were analyzed by HS-SPME analysis method using GC/MS. Bacteria communities were identified at the class level by NGS analysis. Actinobacteria and Betaproteobacteria were dominant taxon in bacteria community of three serial lakes. In the case of phytoplankton communities showed that seasonal changes by Bacillariophyceae and Cryptophyceae in spring, Cyanobacteria in summer, and Bacillariophyceae and Cryptophyceae in autumn. Dominant species was Dolichospermum (=Anabaena), Microcystis and Pseudanabaena in Bukhan River system in all study period. At the same time the odors geosmin and 2-MIB were also detected at high concentration. There is a significant positive correlation between proportion of Actinobaceria and 2-MIB concentration (r=0.491, p<0.01). In addition, proportion of cyanobacteria showed a significant correlation of geosmin (r=0.381, p<0.05) and 2-MIB (r=0.386, p<0.05) concentration. In this study, odor compounds in the Bukhan River system are considered to be a direct relationship between with Actinobacteria and cyanobacteria.

Unrecorded prokaryotic species belonging to the class Actinobacteria in Korea

  • Kim, Mi-Sun;Jeong, Seong-Hwa;Kang, Joo-Won;Kim, Seung-Bum;Cho, Jang-Cheon;Cha, Chang-Jun;Im, Wan-Taek;Bae, Jin-Woo;Lee, Soon-Dong;Kim, Won-Yong;Kim, Myung-Kyum;Seong, Chi-Nam
    • Journal of Species Research
    • /
    • v.8 no.1
    • /
    • pp.97-108
    • /
    • 2019
  • For the collection of indigenous prokaryotic species in Korea, 35 strains within the class Actinobacteria were isolated from various environmental samples (animals and clinical specimens) in 2017. Each strain showed high 16S rRNA gene sequence similarity (>98.8%) and formed a robust clade with recognized actinobacterial species. The isolates were assigned to 35 species, 22 genera, 15 families, and 8 orders of the class Actinobacteria. There are no official descriptions of these 35 bacterial species in Korea. Morphological properties, basic biochemical characteristics, isolation source, and strain IDs are included in the species descriptions.

Description of unrecorded bacterial species belonging to the phylum Actinobacteria in Korea

  • Kim, Mi-Sun;Kim, Seung-Bum;Cha, Chang-Jun;Im, Wan-Taek;Kim, Won-Yong;Kim, Myung-Kyum;Jeon, Che-Ok;Yi, Hana;Yoon, Jung-Hoon;Kim, Hyung-Rak;Seong, Chi-Nam
    • Journal of Species Research
    • /
    • v.10 no.1
    • /
    • pp.23-45
    • /
    • 2021
  • For the collection of indigenous prokaryotic species in Korea, 77 strains within the phylum Actinobacteria were isolated from various environmental samples, fermented foods, animals and clinical specimens in 2019. Each strain showed high 16S rRNA gene sequence similarity (>98.8%) and formed a robust phylogenetic clade with actinobacterial species that were already defined and validated with nomenclature. There is no official description of these 77 bacterial species in Korea. The isolates were assigned to 77 species, 31 genera, 18 families, 14 orders and 2 classes of the phylum Actinobacteria. All the strains except one Coriobacteriia strain were affiliated within the class Actinomycetia. Among them, the orders Streptomycetales and Microbacteriales were predominant. A number of strains were isolated from forest soils, riverside soils, and ginseng cultivated soils. Twenty-nine strains were isolated from 'Protected Ecosystem and Scenery Areas'. Morphological properties, basic biochemical characteristics, isolation source and strain IDs are described in the species descriptions.

Report on 31 unrecorded bacterial species in Korea that belong to the phylum Actinobacteria

  • Choi, Jung-Hye;Cha, Ju-Hee;Bae, Jin-Woo;Cho, Jang-Cheon;Chun, Jongsik;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Joh, Kiseong;Kim, Seung Bum;Seong, Chi Nam;Yoon, Jung-Hoon;Cha, Chang-Jun
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • To discover and characterize indigenous species in Korea, a total of 31 bacterial strains that belong to the phylum Actinobacteria were isolated from various niches in Korea. Each strain showed the high sequence similarity (>99.1%) with the closest bacterial species, forming a robust phylogenetic clade. These strains have not been previously recorded in Korea. According to the recently updated taxonomy of the phylum Actinobacteria based upon 16S rRNA trees, we report 25 genera of 13 families within 5 orders of the class Actinobacteria as actinobacterial species found in Korea. Cellular morphology, Gram staining, basic biochemical characteristics are described in the species description.

Metagenomic Analysis of BTEX-Contaminated Forest Soil Microcosm

  • Ji, Sang-Chun;Kim, Doc-Kyu;Yoon, Jung-Hoon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.668-672
    • /
    • 2007
  • A microcosmal experiment using a metagenomic technique was designed to assess the effect of BTEX (benzene, toluene, ethylbenzene, and xylenes) on an indigenous bacterial community in a Daejeon forest soil. A compositional shift of bacterial groups in an artificial BTEX-contaminated soil was examined by the 16S rDNA PCR-DGGE method. Phylogenetic analysis of 16S rDNAs in the dominant DGGE bands showed that the number of Actinobacteria and Bacillus populations increased. To confirm these observations, we performed PCR to amplify the 23S rDNA and 16S rDNA against the sample metagenome using Actinobacteria-targeting and Bacilli-specific primer sets, respectively. The result further confirmed that a bacterial community containing Actinobacteria and Bacillus was affected by BTEX.

A Comparison of Bacterial Diversity Associated with the Sponge Spirastrella abata Depending on RFLP and DGGE (RFLP와 DGGE에 따른 해면 Spirastrella abata 공생세균의 다양성 비교)

  • Jeong, Eun-Ji;Im, Choon-Soo;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.366-374
    • /
    • 2010
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Spirastrella abata. A total of 164 bacterial strains associated with the sponge were cultivated using Zobell and Natural sea salt media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 95% similarities compared with known bacterial species, and the isolates belonged to four phyla, Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteriodetes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge- derived total gDNA showed five major DGGE bands, and their sequences showed more than 96% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of four phyla, including Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Spirochetes, and Chloroflexi. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with S. abata by both RFLP and DGGE methods; however, overall bacterial community in the sponge differed depending on the analysis methods.

Comparative Analysis of Soil Microbial Communities between Conventional and Organic Farming Systems in Pepper Cultivation (관행과 유기농 고추 재배지의 토양미생물 군집 비교)

  • Kim, Yiseul;Lee, Youngmi;Weon, Hang-Yeon;Sang, Mee Kyung;Song, Jaekyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.235-250
    • /
    • 2020
  • Agricultural practices are known to have a crucial influence not only on soil physico-chemical properties but also on microbial communities. To investigate the effect of farming practices on soil microbial communities, a total of 10 soil samples were collected, including five conventional and five organic farming soils cultivated with peppers in plastic greenhouse. We conducted barcorded-pyrosequencing of V1-V3 regions of 16S rRNA genes to examine soil microbial communities of two different farming practices. Taxonomic classification of the microbial communities at the phylum level indicated that a total of 22 bacterial phyla were present across all samples. Among them, seven abundant phyla (>3%) including Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were found, and Proteobacteria (33.0 ± 5.7%), Actinobacteria (19.9 ± 9.7%), and Firmicutes (13.6 ± 5.0%) comprised more than 66% of the relative abundance of the microbial communities. Organic farming soils showed higher relative abundances of Proteobacteria and Firmicutes, while Actinobacteria and Chloroflexi were more abundant in conventional farming soils. Notably, the genera Bacillus (higher in organic farming soils) and Streptomyces (higher in conventional farming soils) exhibited significant variation in relative abundance between organic and conventional farming soils. Finally, correlation analysis identified significant relationships (p<0.05) between soil chemical properties, in particular, pH and organic matter content and microbial communities. Taken together, this study demonstrated that the changes of soil physico-chemical properties by agricultural farming practices effected significantly (p<0.05) on soil microbial communities.