Browse > Article
http://dx.doi.org/10.11625/KJOA.2020.28.2.235

Comparative Analysis of Soil Microbial Communities between Conventional and Organic Farming Systems in Pepper Cultivation  

Kim, Yiseul (농촌진흥청 국립농업과학원 농업미생물과)
Lee, Youngmi (농촌진흥청 국립농업과학원 유기농업과)
Weon, Hang-Yeon (농촌진흥청 국립농업과학원 농업미생물과)
Sang, Mee Kyung (농촌진흥청 국립농업과학원 농업미생물과)
Song, Jaekyeong (국립농업과학원 농업미생물과)
Publication Information
Korean Journal of Organic Agriculture / v.28, no.2, 2020 , pp. 235-250 More about this Journal
Abstract
Agricultural practices are known to have a crucial influence not only on soil physico-chemical properties but also on microbial communities. To investigate the effect of farming practices on soil microbial communities, a total of 10 soil samples were collected, including five conventional and five organic farming soils cultivated with peppers in plastic greenhouse. We conducted barcorded-pyrosequencing of V1-V3 regions of 16S rRNA genes to examine soil microbial communities of two different farming practices. Taxonomic classification of the microbial communities at the phylum level indicated that a total of 22 bacterial phyla were present across all samples. Among them, seven abundant phyla (>3%) including Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were found, and Proteobacteria (33.0 ± 5.7%), Actinobacteria (19.9 ± 9.7%), and Firmicutes (13.6 ± 5.0%) comprised more than 66% of the relative abundance of the microbial communities. Organic farming soils showed higher relative abundances of Proteobacteria and Firmicutes, while Actinobacteria and Chloroflexi were more abundant in conventional farming soils. Notably, the genera Bacillus (higher in organic farming soils) and Streptomyces (higher in conventional farming soils) exhibited significant variation in relative abundance between organic and conventional farming soils. Finally, correlation analysis identified significant relationships (p<0.05) between soil chemical properties, in particular, pH and organic matter content and microbial communities. Taken together, this study demonstrated that the changes of soil physico-chemical properties by agricultural farming practices effected significantly (p<0.05) on soil microbial communities.
Keywords
conventional farming; microbial communities; organic farming; pepper; pyrosequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity and J. M. Tiedje. 2009. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145.   DOI
2 Esperschutz, J., A. Gattinger, P. Mader, M. Schloter, and A. Fliessbach. 2007. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS. Microbiol. Ecol. 61: 26-37.   DOI
3 Hartmann, M., B. Frey, J. Mayer, P. Mäder, and F. Widmer. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. J. ISME. 9: 1177-1194.   DOI
4 Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60: 579-598.   DOI
5 Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. N. Klironomos, H. Lee, and J. T. Trevors. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods. 58: 169-188.   DOI
6 Lauber, C. L., M. Hamady, R. Knight, and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75: 5111-5120.   DOI
7 Lee, S. T., D. C. Seo, J. S. Cho, E. S. Kim, W. D. Song, and Y. H. Lee. 2011. Influence of cultivated regions in organic and conventional farming paddy field. Korean J. Soil Sci. Fert. 44(3): 408-414.   DOI
8 Lee, Y., J. H. Ahn, Y. M. Choi, H. Y. Weon, J. H. Yoon, and J. Song. 2015. Bacterial core community in soybean rhizosphere. Korean J. Microbiol. 51(4): 347-354.   DOI
9 Li, R., E. Khafipour, D. O. Krause, M. H. Entz, T. R. de Kievit, and W. G. Dilantha Fernando. 2012. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS ONE. 7(12): e51897.   DOI
10 Liao, J., Y. Liang, and D. Huang. 2018. Organic farming improves soil microbial abundance and diversity under greenhouse condition: a case study in shanghai (Eastern China). Sustainability. 10: 3825.   DOI
11 Liu, B., C. Tu, S. Hu, M. Gumpertz, and J. B. Ristaino. 2007. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil. Ecol. 37: 202-214.   DOI
12 Lori, M., S. Symnaczik, P. Mäder, G. De Deyn, and A. Gattinger. 2017. Organic farming enhances soil microbial abundance and activity-a meta-analysis and meta-regression. PLoS One. 12: e0180442-e0180442.   DOI
13 Lupatini, M., G. Korthals, M. de Hollander, T. Janssens, and E. Kuramae. 2017. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 7: 2064.
14 Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science. 296: 1694-1697.   DOI
15 NIAST. 2002. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
16 Oehl, F., E. Sieverding, K. Ineichen, P. Mader, T. Boller, and A. Wiemken. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69: 2816-2824.   DOI
17 Pruesse, E., J. Peplies, and F. O. Glockner. 2012. Sina: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829.   DOI
18 Orr, C. H., A. James, C. Leifert, J. M. Cooper, and S. P. Cummings. 2011. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl. Environ. Microbiol. 77(3): 911-919.   DOI
19 Pershina, E., J. Valkonen, P. Kurki, E. Ivanova, E. Chirak, I. Korvigo, N. Provorov, and E. Andronov. 2015. Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One. 10: e0145072-e0145072.   DOI
20 Pimentel, D., P. Hepperly, J. Hanson, D. Douds, and R. Seidel. 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. J. Biosci. 55: 573-582.   DOI
21 Quince, C., A. Lanzen, R. J. Davenport, and P. J. Turnbaugh. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12: 38.   DOI
22 Ramirez, K. S., C. L. Lauber, R. Knight, M. A. Bradford, and N. Fierer. 2010. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 91: 3463-3470.   DOI
23 RDA. 2013. Pepper. Agricultural technic guideline. RDA, Suwon, Korea.
24 RDA. 2009. Pepper. Organic cultivation manual. RDA, Suwon, Korea.
25 Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, and C. J. Robinson. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
26 Wright, S. F., J. L. Starr, and I. C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. J. Soil. Sci. Soc. Am. 63: 1825-1829.   DOI
27 Shokralla, S., J. Spall, J. Gibson, and M. Hajibabaei. 2012. Next-generation sequencing technologies for enviromental DNA research. Mol. Ecol. 21: 1794-1805.   DOI
28 Stagnari, F., G. Perpetuini, R. Tofalo, G. Campanelli, F. Leteo, U. Della Vella, M. Schirone, G. Suzzi, and M. Pisante. 2014. Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Front Microbiol. 5: 644-644.
29 Torjusen, H., G. Lieblein, M. Wandel, and C. A. Francis. 2001. Food system orientation and quality perception among consumers and producers of organic food in Hedmark County, Norway. Food Qual. Prefer. 12: 207-216.   DOI
30 van Diepeningen, A. D., O. J. de Vos, G. W. Korthals, and A. H. C. van Bruggen. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil. Ecol. 31: 120-135.   DOI
31 Xue, K., L. Wu, Y. Deng, Z. He, J. V. Nostrand, P. G. Robertson, T. M. Schmidt, and J. Zhou. 2013. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl. Environ. Microbiol. 79: 1284-1292.   DOI
32 Zikeli, S., L. Deil, and K. Moller. 2017. The challenge of imbalanced nutrient flows in organic farming systems: a study of organic greenhouses in Southern Germany. Agric. Ecosyst. Environ. 244: 1-13.   DOI
33 Chaudhry, V., A. Rehman, A. Mishra, P. Chauhan, and C. S. Nautiyal. 2012. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64: 450-460.   DOI
34 Ahn, J. H., B. Y. Kim, D. H. Kim, J. Song, and H. Y. Weon. 2012. Application of amplicon pyrosequencing in soil microbial ecology. Korean J. Soil Sci. Fert. 45(6): 1073-1085.   DOI
35 Araujo A. S. F. and W. J. Melo. 2010. Soil microbial biomass in organic farming system. Ciencia Rural, Santa Maria. 40(11): 2419-2426.   DOI
36 Barak, P., B. O. Jobe, A. R. Krueger, L. A. Peterson, and D. A. Laird. 1997. Effects of longterm soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil. 197: 61-69.   DOI
37 Cho, H. J., S. W. Hwang, K. H. Han, H. R. Cho, J. H. Shin, and L. Y. Kim. 2009. Physicochemical properties of upland soils under organic farming. Korean J. Soil Sci. Fert. 42(2): 98-102
38 Choi, B. S., J. A. Jung, M. K. Oh, S. H. Jeon, H. G. Goh, Y. S. Ok, and J. K. Sung. 2010. Effects of green manure crops on improvement of chemical and biological properties in soil. Korean J. Soil Sci. Fert. 43(5): 650-658.
39 Chung, J. B., and Y. J. LEE. 2008. Comparison of soil nutrient status in conventional and organic apple farm. Korean. Soc. Soil Sci. Fert. 41(1): 26-33.