• Title/Summary/Keyword: Acoustic wave

Search Result 1,215, Processing Time 0.028 seconds

Optical metrology for resonant surface acoustic wave in RF device (RF 소자의 표면탄성파 공진에 대한 광학적 측정)

  • Park, Jun-Oh;Jang, Won-Kweon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3435-3440
    • /
    • 2010
  • Unlike the electric method capable of checking only product defect, the real time optical metrology is suggested for measuring and visualizing vibration with respect to position of surface acoustic wave in RF device. The measuring limits and conditions for surface acoustic wave is given, and the interference and diffraction due to RF signal are analyzed by optical interpretation. A single mode laser and a 105MHz-center-frequency repeater filter were employed for experiments and theoretical analysis. In this paper, the optical metrology providing visual energy distribution and real time inspection for surface acoustic wave is proposed for development of high quality multi-service and multi-frequency RF module.

THE EFFECT OF DUST PARTICLES ON ION ACOUSTIC SOLITARY WAVES IN A DUSTY PLASMA

  • Choi, Cheong-Rim;Lee, Dae-Young;Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • In this paper we have examined the effect of dust charge density on nonlinear ion acoustic solitary wave which propagates obliquely with respect to the external magnetic field in a dusty plasma. For the dusty charge density below a critical value, the Sagdeev potential $\Psi1(n)$ has a singular point in the region n < 1, where n is the ion number density divided by its equilibrium number density. If there exists a dust charge density over the critical value, the Sagdeev potential becomes a finite function in the region n < 1, which means that there may exist the rarefactive ion acoustic solitary wave. By expanding the Sagdeev potential in the small amplitude limit up to on4 near n=1, we find the solution of ion acoustic solitary wave. Therefore we suggest that the dust charge density plays an important role in generating the rarefactive solitary wave.

ACOUSTIC TIME DOMAIN CORRELATION TECHNIQUE (ATDCT) IN OCEAN WAVE AND CURRENT OBSERVATION

  • I.N. Dienkulov;E.J. Kim;S.W. Yoon;V.V. Frolov
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.210-214
    • /
    • 1993
  • There are two general techniques to observe particle movements in fluid. One is the acoustic time domain correlation technique and another is the frequency domain Doppler-shift techniques. Both techniques were reviewed and mentioned their some merits and demerits in ocean wave and current observation. Some possible application of acoustic time domain correlation technique in ocean wind wave measurement was discussed.

  • PDF

Bending Fatigue Characterization of Al6061 Alloy by Acoustic Nonlinearity of Narrow Band Laser-Generated Surface Wave (협대역 레이저 여기 표면파의 음향버선형성을 이용한 A16061 합금의 굽힘피로손상 평가)

  • Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young;Kim, Chung-Seok;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • Bending fatigue of aluminium alloy was characterized by acoustic nonlinearity of narrow band laser-generated surface wave. The higher harmonic components generated intrinsically by arrayed line laser beam were analyzed theoretically and acoustic nonlinearity was measured successfully on the surface of fatigue damaged aluminium 6061 alloy. The acoustic nonlinearity increased as a function of fatigue cycles and has close relation with damage level. Consequently, the nonlinear acoustic technique of laser-generated surface wave could be potential to characterize surface damages subjected to fatigue.

Hydrodynamic characteristics of a pendant dmp by acoustic wave (음파가 가해진 액적의 진동에 관한 동적 특성)

  • Moon Jong Hoon;Kim Ho-Young;Kang Byung Ha
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.76-79
    • /
    • 2004
  • Dynamic oscillation motion of a pendant drop has been Investigated experimentally when acoustic wave is applied. This problem is of particular interest in the understanding of transport phenomena, accompanied by liquid drop. In this experiment, pendant drop was made to oscillate by inducing the acoustic wave and the subsequent drop motion was recorded by a high-speed camera. The results obtained indicate that liquid drop hanging on the flat surface has resonant frequencies on each shape oscillation modes. It is also found that exists the swing mode of oscillation on the pendant drop.

  • PDF

Investigation of acoustic monitoring on laser shock cleaning process (레이저 충격파 클리닝 공정에서 음향 모니터링에 관한 연구)

  • 김태훈;이종명;조성호;김도훈
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • A laser shock cleaning technology is a new dry cleaning methodology for the effective removal of small particles from the surface. This technique uses a plasma shock wave produced by a breakdown of air due to an intense laser pulse. In order to optimize the laser shock cleaning process, it needs to evaluate the cleaning performance quantitatively by using a monitoring technique. In this paper, an acoustic monitoring technique was attempted to investigate the laser shock cleaning process with an aim to optimize the cleaning process. A wide-band microphone with high sensitivity was utilized to detect acoustic signals during the cleaning process. It was found that the intensity of the shock wave was strongly dependent on the power density of laser beam and the gas species at the laser beam focus. As a power density was larger, the shock wave became stronger. It was also seen that the shock wave became stronger in the case of Ar gas compared with air and N$_2$ gas.

  • PDF

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

Extracorporeal Shock Wave Therapy: Its Acoustical Aspects

  • Choi, Min-Joo;Cho, Sung-Chan;Paeng, Dong-Guk;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.119-130
    • /
    • 2010
  • Extracorporeal shock wave therapy (ESWT) is simply evolved from extracorporeal shock wave lithotripsy known as a revolutionary non-invasive technique for treating kidney stone diseases. Since ESWT was approved for treating plantar fasciitis by FDA in 2000, it has been rapidly accepted into various clinical practices. Its indication includes chronic tendinitis and pseudoarthrosis, and has been widened to various applications other than orthopeadics. Little has been reported on their acoustic properties, yet, even if a number of clinical ESWT systems are readily available. This article reviews the acoustical aspects of ESWT and discusses critical issues towards acoustic exposure optimization and shock wave dosimetry.

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.