Browse > Article
http://dx.doi.org/10.5666/KMJ.2019.59.4.631

Global Nonexistence of Solutions for a Quasilinear Wave Equation with Time Delay and Acoustic Boundary Conditions  

Kang, Yong Han (Francisco College, Daegu Catholic University)
Park, Jong-Yeoul (Department of Mathematics, Pusan National University)
Publication Information
Kyungpook Mathematical Journal / v.59, no.4, 2019 , pp. 631-649 More about this Journal
Abstract
In this paper, we prove the global nonexistence of solutions for a quasilinear wave equation with time delay and acoustic boundary conditions. Further, we establish the blow up result under suitable conditions.
Keywords
global nonexistence of solutions; quasilinear wave equation; blow up; time delay; acoustic boundary;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80(1974), 1276-1278.   DOI
2 A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys., 53(12)(2012), 123514, 19 pp.   DOI
3 Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97(2014), 191-209.   DOI
4 Y. Boukhatem and B. Benabderrahmane, Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions, Acta Math. Sin. (Engl. Ser.), 32(2)(2016), 153-174.   DOI
5 H. Di, Y. Shang and X. Peng, Global existence and nonexistence of solutions for a viscoelastic wave equation with nonlinear boundary source term, Math. Nachr., 289(11-12)(2016), 1408-1432.   DOI
6 P. J. Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differ. Eq., 252(2012), 4898-4941.   DOI
7 J. M. Jeong, J. Y. Park and Y. H. Kang, Energy decay rates for viscoelastic wave equation with dynamic boundary conditions, J. Comput. Anal. Appl., 19(3)(2015), 500-517.
8 J. M. Jeong, J. Y. Park and Y. H. Kang, Global nonexistence of solutions for a quasilinear wave equations for a quasilinear wave equation with acoustic boundary conditions, Bound. Value Probl., (2017), Paper No. 42, 10 pp.
9 M. J. Lee, J. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70(2015), 478-487.   DOI
10 M. Kirane and S. A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13(2016), 237-247.   DOI
11 M. J. Lee, J. Y. Park and Y. H. Kang, Energy decay rates for the semilinear wave equation with memory boundary condition and acoustic boundary conditions, Comput. Math. Appl., 73(2017), 1975-1986.   DOI
12 H. A. Levine and J. Serrin, A global non-existence theorem for quasilinear evolution equations with dissipation, Archives for Rational Mechanics and Analysis, 137(1997), 341-361.   DOI
13 W. Liu and M. Wang, Global nonexistence of solutions with positive initial energy for a class of wave equations, Math. Meth. Appl. Sci., 32(2009), 594-605.   DOI
14 S. I. Messaoudi and B. S. Houari, Global non-existence of solutions of a class of wave equations with non-linear damping and source terms, Math. Methods Appl. Sci., 27(2004), 1687-1696.   DOI
15 P. M. Morse and K. U. Ingard, Theoretical acoustics, McGraw-Hill, New York, 1968.
16 F. Q. Sun and M. X. Wang, Global and blow-up solutions for a system of nonlinear hyperbolic equations with dissipative terms, Nonlinear Anal., 64(2006), 739-761.   DOI
17 S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45(5)(2006), 1561-1585.   DOI
18 M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62(2011), 1065-1082.   DOI
19 S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differ. Eq., (2011), No. 40, 20 pp.
20 Y. I. Seo and Y. H. Kang, Energy decay rates for the Kelvin-Voigt type wave equation with acoustic boundary, J. KSIAM, 16(2)(2012), 85-91.
21 E. Vitillaro, Global non-existence theorems for a class of evolution equations with dissipation, Archives for Rational Mechanics and Analysis, 149(1999), 155-182.   DOI
22 S. T.Wu, Non-existence of global solutions for a class of wave equations with nonlinear damping and source terms, Proc. Roy. Soc. Edinburgh Sect. A, 141(4)(2011), 865-880.   DOI
23 Z. J. Yang, G. W. Chen, Global existence of solutions for quasilinear wave equations with viscous damping, J. Math. Anal. Appl. 285(2003), 604-618.   DOI
24 E. Piskin, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Bound. Value Probl.,(2015), 2015:127, 14pp.