1 |
J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80(1974), 1276-1278.
DOI
|
2 |
A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys., 53(12)(2012), 123514, 19 pp.
DOI
|
3 |
Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97(2014), 191-209.
DOI
|
4 |
Y. Boukhatem and B. Benabderrahmane, Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions, Acta Math. Sin. (Engl. Ser.), 32(2)(2016), 153-174.
DOI
|
5 |
H. Di, Y. Shang and X. Peng, Global existence and nonexistence of solutions for a viscoelastic wave equation with nonlinear boundary source term, Math. Nachr., 289(11-12)(2016), 1408-1432.
DOI
|
6 |
P. J. Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differ. Eq., 252(2012), 4898-4941.
DOI
|
7 |
J. M. Jeong, J. Y. Park and Y. H. Kang, Energy decay rates for viscoelastic wave equation with dynamic boundary conditions, J. Comput. Anal. Appl., 19(3)(2015), 500-517.
|
8 |
J. M. Jeong, J. Y. Park and Y. H. Kang, Global nonexistence of solutions for a quasilinear wave equations for a quasilinear wave equation with acoustic boundary conditions, Bound. Value Probl., (2017), Paper No. 42, 10 pp.
|
9 |
M. J. Lee, J. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70(2015), 478-487.
DOI
|
10 |
M. Kirane and S. A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13(2016), 237-247.
DOI
|
11 |
M. J. Lee, J. Y. Park and Y. H. Kang, Energy decay rates for the semilinear wave equation with memory boundary condition and acoustic boundary conditions, Comput. Math. Appl., 73(2017), 1975-1986.
DOI
|
12 |
H. A. Levine and J. Serrin, A global non-existence theorem for quasilinear evolution equations with dissipation, Archives for Rational Mechanics and Analysis, 137(1997), 341-361.
DOI
|
13 |
W. Liu and M. Wang, Global nonexistence of solutions with positive initial energy for a class of wave equations, Math. Meth. Appl. Sci., 32(2009), 594-605.
DOI
|
14 |
S. I. Messaoudi and B. S. Houari, Global non-existence of solutions of a class of wave equations with non-linear damping and source terms, Math. Methods Appl. Sci., 27(2004), 1687-1696.
DOI
|
15 |
P. M. Morse and K. U. Ingard, Theoretical acoustics, McGraw-Hill, New York, 1968.
|
16 |
F. Q. Sun and M. X. Wang, Global and blow-up solutions for a system of nonlinear hyperbolic equations with dissipative terms, Nonlinear Anal., 64(2006), 739-761.
DOI
|
17 |
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45(5)(2006), 1561-1585.
DOI
|
18 |
M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62(2011), 1065-1082.
DOI
|
19 |
S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differ. Eq., (2011), No. 40, 20 pp.
|
20 |
Y. I. Seo and Y. H. Kang, Energy decay rates for the Kelvin-Voigt type wave equation with acoustic boundary, J. KSIAM, 16(2)(2012), 85-91.
|
21 |
E. Vitillaro, Global non-existence theorems for a class of evolution equations with dissipation, Archives for Rational Mechanics and Analysis, 149(1999), 155-182.
DOI
|
22 |
S. T.Wu, Non-existence of global solutions for a class of wave equations with nonlinear damping and source terms, Proc. Roy. Soc. Edinburgh Sect. A, 141(4)(2011), 865-880.
DOI
|
23 |
Z. J. Yang, G. W. Chen, Global existence of solutions for quasilinear wave equations with viscous damping, J. Math. Anal. Appl. 285(2003), 604-618.
DOI
|
24 |
E. Piskin, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Bound. Value Probl.,(2015), 2015:127, 14pp.
|