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Abstract. In this paper, we prove the global nonexistence of solutions for a quasilinear

wave equation with time delay and acoustic boundary conditions. Further, we establish

the blow up result under suitable conditions.

1. Introduction

In this paper, we consider the following quasilinear wave equation with time
delay and acoustic boundary conditions:

(|ut(x, t)|l−2ut(x, t))t −4ut(x, t)− div(a(x)|∇u(x, t)|α−2∇u(x, t))

−div(|∇ut(x, t)|β−2∇ut(x, t)) +Q(x, t, ut) + µ1ut(x, t)

+µ2ut(x, t− τ) = f(x, u(x, t)) in Ω× [0, T ),(1.1)

u = 0 on Γ0 × [0, T ),(1.2)

∂ut(x, t)

∂ν
+ a(x)|∇u(x, t)|α−2 ∂u(x, t)

∂ν

+|∇ut(x, t)|β−2 ∂ut(x, t)

∂ν
= h(x)yt(x, t) on Γ1 × [0, T ),(1.3)

ut(x, t) + k(x)yt(x, t) + q(x)y(x, t) = 0 on Γ1 × [0, T ),(1.4)
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u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,(1.5)

ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),(1.6)

y(x, 0) = y0(x) on Γ1.(1.7)

Here, J = [0, T ), 0 < T ≤ ∞, a : Ω −→ R+ is a positive function, l, α, β ≥ 2,
µ1 > 0, µ2 is a real number, and τ > 0 represents the time delay. Further, Ω is
a regular and bounded domain of Rn(n ≥ 1) and ∂Ω(:= Γ) = Γ0 ∪ Γ1, where Γ0

and Γ1 are closed and disjoint and ∂
∂ν denotes the outer normal derivative. The

functions k, q, h : Γ1 −→ R+(:= [0,∞]) are essentially bounded and 0 < q0 ≤ q(x)
on Γ1.

The acoustic boundary conditions were introduced by Morse and Ingard [16]
and developed by Beale and Rosencrans in [1], where the authors proved the global
existence and regularity of the linear problem. Other authors have studied the exis-
tence and decay of solutions for a viscoelastic wave equation with acoustic boundary
conditions (see [3, 4, 6, 7, 12, 13, 15, 19, 20, 23] and the references therein).

The time delay arises in many physical, chemical, biological and economical
phenomena because these phenomena depend not only on the present state but
also on the past history of the system in a more complicated way. In particular,
the effects of time delay strikes on our system have a significant effect on the range
of existence and the stability of the system. The differential equations with time
delay effects have become an active area of research, see for example [9, 11, 17, 18].
In [14], without the delay term and the acoustic boundary condition, Liu and Wang
considered the global nonexistence of solutions with the positive initial energy for
a class of wave equations:

(|ut(x, t)|l−2ut(x, t))t −4ut(x, t)− div(a(x)|∇u(x, t)|α−2∇u(x, t))

−div(|∇ut(x, t)|β−2∇ut(x, t)) +Q(x, t, ut)

= f(x, u(x, t)) in J × Ω,

u(x, t) = 0 on J × ∂Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

where J = [0, T ), 0 < T ≤ ∞, Ω is a bounded regular open subset of Rn(n ≥ 1),
l, α, β ≥ 2 and a,Q, f satisfy some conditions. Recently, for l = 2, a(x) = 1, Q(ut) =
a|ut|m−2ut, µ1 = µ2 = 0, f(u) = b|u|p−2u, and without the time delay term in
our system, Jeong at al [8] investigated the global nonexistence of solutions for a
quasilinear wave equation with acoustic boundary conditions

utt −4ut − div(|∇u|α−2∇u)− div(|∇ut|β−2∇ut)
+a|ut|m−2ut = b|u|p−2u in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

∂ut
∂ν

+ |∇u|α−2 ∂u

∂ν

+|∇ut|β−2 ∂ut
∂ν

= h(x)yt on Γ1 × (0,∞),
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ut + f(x)yt + q(x)y = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

y(x, 0) = y0(x) on Γ1,

where a, b > 0, α, β,m, p > 2 are constants and Ω is a regular and bounded domain
of Rn(n ≥ 1) and ∂Ω(= Γ) = Γ0 ∪ Γ1. Here Γ0 and Γ1 are closed and disjoint.
The functions h, f, q : Γ1 → R+ are essentially bounded. Moreover, for a(x) =
1, l = 2, div(|∇ut|β−2∇ut) = 0, Q = 0, and without boundary conditions, Kafini
and Messaoudi [10] studied the following nonlinear damped wave equation

utt(x, t)− div(|∇u(x, t)|m−2∇u(x, t))

+µ1ut(x, t) + µ2ut(x, t− τ) = b|u(x, t)|p−2u(x, t) in Ω× (0,∞),

ut(x, t− τ) = f0(x, t− τ) on (0, τ),

u(x, t) = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

where p > m ≥ 2, b, µ1 are positive constants, µ2 is a real number, and τ > 0
represents the time delay. They proved the blow-up result in a nonlinear wave
equation with time delay and without acoustic boundary conditions.

Motivated by the previous works, we consider an equation in a broader and
more generalized form than the system discussed above. So we study the global
nonexistence of solutions for a quasilinear wave equation with the time delay and
acoustic boundary conditions. To the best of our knowledge. there are no results of
a quasilinear wave equations with the time delay and acoustic boundary conditions.
Thus the result in this work is very meaningful. The main result will be proved in
Section 3.

2. Preliminaries

In this section, we shall give some notations, assumptions and a theorem which
will be used throughout this paper. We denote by m′ the Hölder conjugate of
m, ||u||p = ||u||Lp(Ω), ||u||p,Γ = ||u||Lp(Γ), ||u||1,s = ||u||W 1,s(Ω), where Lp(Ω) and
W 1,s(Ω) stand for the Lebesgue spaces and the classical Sobolev spaces, respectively.
Specially we introduce the set

W 1,s
Γ0

(Ω) = {u ∈W 1,s | u = 0 on Γ0}, W 1,s
0 (Ω) = {u ∈W 1,s | u = 0 on Γ}.

We make the following same assumptions on a,Q, f as section 4.2 of [22].

(H1) a(x) ∈ L∞(Ω) such that a(x) ≥ a0 a.e. in Ω for some a0 > 0.

(H2) f(x, u) ∈ C(Ω×Rn,Rn) and f(x, u) = ∇uΦ(x, u), with normalizing condition
Φ(x, 0) = 0.

There are constants d1 > 0, p > α and µ < µ0a0 such that

|f(x, u)| ≤ µ|u|α−1 + d1|u|p−1(2.1)
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for all x ∈ Ω and u ∈ Rn. Moreover, there is ε1 > 0 such that for all ε ∈ (0, ε1] there
exists d2 = d2(ε) > (p− α)d1/p such that

f(x, u)u− (p− ε)Φ(x, u) ≥ d2|u|p(2.2)

for all x ∈ Ω.

(H3) There are m > 1 and a measurable function d = d(x, t) defined on Ω×J such
that d(·, t) ∈ Lp/(p−m)(Ω) for a.e. t ∈ J and

Q(x, t, v)v ≥ 0(2.3)

|Q(x, t, v)| ≤ [d(x, t)]1/m[Q(x, t, v)v]1/m
′

(2.4)

for all values of the arguments x, t, v, where

(2.5) d(x, t) ≥ 0, ||d(·, t)||p/(p−m) ∈ L∞loc(J).

Remark 2.1. We note that when Q(x, t, ut) = b(1+t)ρ|ut|m−2ut, −∞ < ρ ≤ m−1,
condition (H3) holds.

Now, we transform the equation (1.1)–(1.7) to the system, using the idea of [21]
and introduce the associated energy. So, we introduce the new variable:

z(x, ρ, t) = ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Thus, we have

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then problem (1.1)–(1.7) takes the following form:

(|ut(x, t)|l−2ut(x, t))t −4ut(x, t)− div(a(x)|∇u(x, t)|α−2∇u(x, t))

−div(|∇ut(x, t)|β−2∇ut(x, t)) +Q(x, t, ut)

+µ1ut(x, t) + µ2z(x, 1, t) = f(x, u(x, t)) in Ω× J,(2.6)

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× J,(2.7)

u = 0 on Γ0 × J,(2.8)

∂ut(x, t)

∂ν
+ a(x)|∇u(x, t)|α−2 ∂u(x, t)

∂ν

+|∇ut(x, t)|β−2 ∂ut(x, t)

∂ν
= h(x)yt(x, t) on Γ1 × J,(2.9)

ut(x, t) + k(x)yt(x, t) + q(x)y(x, t) = 0 on Γ1 × J,(2.10)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,(2.11)

z(x, ρ, 0) = f0(x,−ρτ) in Ω× (0, 1),(2.12)

y(x, 0) = y0(x) on Γ1.(2.13)
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We introduce the following space

Z = L∞([0, T );W 1,α
Γ0

(Ω)) ∩W 1,∞([0, T );L2(Ω))

∩W 1,β([0, T );W 1,β
Γ0

(Ω)) ∩W 1,m([0, T );Lm(Ω)),(2.14)

for some T > 0.
We state, without a proof, a local existence which can be established by com-

bining arguments of [2, 5, 24].

Theorem 2.1. Let u0 ∈W 1,α
Γ0

(Ω), u1 ∈ L2(Ω), f0 ∈ L2(Ω× (0, 1)) and y0 ∈ L2(Γ1)
be given. Suppose that l, α, β,m, p > 2, max{l, β,m} < α < p < nα/(n − α),
µ1 > |µ2| and (H1)–(H3) hold. Then problem(2.6)–(2.13) has a unique local
solution (u, z, y) ∈ Z×L2([0, T );L2(Ω×(0, 1)))×L2([0, T );L2(Γ1)) for some T > 0.

In order to state and prove our result, we introduce the energy functional

E(t) =
l − 1

l

∫
Ω

|ut(x, t)|ldx+
1

α

∫
Ω

a(x)|∇u(x, t)|αdx−
∫

Ω

Φ(x, u(x, t))dx

+
ξ

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx+
1

2

∫
Γ1

h(x)q(x)y2(x, t)dΓ,(2.15)

where

τ |µ2| < ξ < τ(2µ1 − |µ2|), µ1 > |µ2|.(2.16)

We set

λ1 = (A0 − µ
µ0

)1/(p−α)(d1B
p
1)−1/(p−α),(2.17)

E1 = ( 1
α −

1
p )(a0 − µ

µ0
)p/(p−α)(d1B

p
1)−α/(p−α),(2.18)

where B1 is the best constant of the Sobolev embedding W 1,α
0 (Ω) ↪→ Lp(Ω) given

by

B−1
1 = inf{||∇u||α : u ∈W 1,α

0 (Ω), ||u||p = 1}.

We also set

Σ = {(λ,E) ∈ R2|λ > λ1, E < E1}.

3. Proof of Main Result

In this section, we state and prove our main result. Our main result as follows.

Theorem 3.1. Let u0 ∈W 1,α
Γ0

(Ω), u1 ∈ L2(Ω), f0 ∈ L2(Ω× (0, 1)) and y0 ∈ L2(Γ1)
be given. Suppose that l, α, β,m, p > 2, max{l, β,m} < α < p < nα/(n − α),
µ1 > |µ2| and (H1)–(H3) hold. Assume further that

(||∇u||α, E(0)) ∈ Σ.
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Then the solution (u, z, y) ∈ Z × L2(R+);L2(Ω × (0, 1))) × L2(R+);L2(Γ1)) of
problem (2.6)–(2.13) can not exist for all time.

In this section, we shall prove Theorem 3.1. We start with a series of lemmas.
We denote

(3.1) λ0 = ||∇u0||α, E0 = E(0).

Theorem 3.1 will be proved by contradiction, so we shall suppose that the solution
of (2.6)–(2.13) exists on the whole interval [0,∞), i.e. T =∞.

Proof of Theorem 3.1. We use the idea of Vitillaro [22].

Lemma 3.1. Let (u, z, y) be the solution of (2.6)–(2.13). Then the energy func-
tional defined by (2.15) satisfies, for some constant c0 > 0,

d
dtE(t) ≤ (l − 1)

∫
Ω

|ut(t)|l−2ut(t)utt(t)dx+

∫
Ω

a(x)|∇u(t)|α−2∇u(t)∇ut(t)dx

−
∫

Ω

Q(x, t, ut(t))ut(t)dx− c0
∫

Ω

(u2
t (t) + z(x, 1, t))dx(3.2)

−
∫

Γ1

h(x)k(x)y2
t (t)dΓ ≤ 0.

Proof. Multiplying the equation (2.6) by ut(t), integrating over Ω, using Green’s
formula and exploiting the equation (2.9), we obtain

d

dt
{ l − 1

l

∫
Ω

|ut(t)|ldx+
1

α

∫
Ω

a(x)|∇u(t)|αdx

−
∫

Ω

Φ(x, u(t))dx} −
∫

Γ1

h(x)yt(t)ut(t)dΓ

= (l − 1)

∫
Ω

|ut(t)|l−2ut(t)utt(t)dx+

∫
Ω

a(x)|∇u(t)|α−2∇u(t)∇ut(t)dx(3.3)

−
∫

Ω

|∇ut(t)|dx−
∫

Ω

∇uΦ(x, u)ut(t)dx

−µ1

∫
Ω

u2
t (t)dx− µ2

∫
Ω

z(x, 1, t)ut(t)dx.

On the other hand, we have from the equation in (2.10) that

−
∫

Γ1
h(x)yt(t)ut(t)dΓ =

∫
Γ1
h(x)k(x)y2

t (t)dΓ +
∫

Γ1
h(x)q(x)y(t)yt(t)dΓ.(3.4)

Also, multiplying the equation (2.7) by ξ
2z(x, ρ, t) and integrating over Ω × (0, 1),
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we deduce

d
dt{

ξ
2

∫
Ω

∫ 1

0
z2(x, ρ, t)dρdx} = − ξ

τ

∫
Ω

∫ 1

0

z(x, ρ, t)zρ(x, ρ, t)dρdx

= − ξ

2τ

∫
Ω

∫ 1

0

∂

∂ρ
z2(x, ρ, t)dρdx(3.5)

=
ξ

2τ

∫
Ω

[z2(x, 0, t)− z2(x, 1, t)]dx

=
ξ

2τ
[

∫
Ω

u2
t (t)dx−

∫
Ω

z2(x, 1, t)dx],

and

−µ2

∫
Ω
z(x, 1, t)ut(t)dx ≤ |µ2|

2 [
∫

Ω
u2
t (t)dx+

∫
Ω
z2(x, 1, t)dx].(3.6)

Hence, from (2.15) and (3.3)–(3.6), we arrive at

d
dtE(t) ≤ −

∫
Ω

|∇ut(t)|2dx−
∫

Ω

|∇ut(t)|βdx

−
∫

Ω

Q(x, t, ut(t))ut(t)dx− (µ1 −
ξ

2τ
− |µ2|

2
)

∫
Ω

u2
t (t)dx

−(
ξ

2τ
− |µ2|

2
)

∫
Ω

z2(x, 1, t)dx−
∫

Γ1

h(x)k(x)y2
t (t)dΓ.

By using (2.16), we get, for some c0 > 0,

d
dtE(t) ≤ −

∫
Ω

|∇ut(t)|2dx−
∫

Ω

|∇ut(t)|βdx

−
∫

Ω

Q(x, t, ut(t))ut(t)dx− c0
∫

Ω

[u2
t (t) + z2(x, 1, t)]dx

−
∫

Γ1

h(x)k(x)y2
t (t)dΓ ≤ 0.(3.7)

Hence we get E(t) ≤ E(0) for all t ∈ J . 2

Lemma 3.2. If (λ0, E(0)) ∈ Σ, then we have

(i) ||∇u(t)||α ≥ λ2 for all t ∈ J , for some λ2 > λ1,(3.8)

(ii) ||u(t)||p ≥ B1λ2 for all t ∈ J , for the some λ2 in (i).(3.9)

Proof. First, we will prove the (i). From (2.15), we see that

(3.10) E(t) ≥ 1

α

∫
Ω

a(x)|∇u(t)|αdx−
∫

Ω

Φ(x, u(t))dx.
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Using (2.1), since f(x, u(t)) = ∇uΦ(x, u(t)), it follows that

Φ(x, u(t)) =

∫ 1

0

f(x, τu(t))u(t)dτ ≤ µ

α
|u(t)|α +

d1

p
|u(t)|p,

and then

(3.11)

∫
Ω

Φ(x, u(t))dx =

∫ 1

0

f(x, τu(t))u(t)dτ ≤ µ

α
||u(t)||αα +

d1

p
||u(t)||pp.

Therefore

E(t) ≥ a0

α
||∇u(t)||αα −

µ

α
||u(t)||αα −

d1

p
||u(t)||pp

≥ (a0 −
µ

µ0
)

1

α
||∇u(t)||αα −

d1

p
||u(t)||pp

≥ (a0 −
µ

µ0
)

1

α
||∇u(t)||αα − d1B

p
1

1

p
||u(t)||pα(3.12)

= (a0 −
µ

µ0
)

1

α
λα − d1B

p
1

1

p
λp := ϕ(λ),

where λ = ||∇u(t)||α. It is easy to verify that ϕ is increasing for 0 < λ < λ1,
decreasing for λ > λ1, ϕ(λ) → −∞ as λ → +∞ and ϕ(λ) = E1, where λ1 is given
in (2.18). Therefore, since E0 < E1, there exists λ2 > λ1 such that ϕ(λ2) = E(0).
From (3.12) we have ϕ(λ0) ≤ E(0) = ϕ(λ2), which implies that λ0 ≥ λ2 since λ0 >
λ1. To proof the result, we suppose by contradiction that ||∇u0||α < λ2, for some
t0 > 0 and by the continuity of ||∇u(t)||α we can choose such that ||∇u(t0)||α > λ1.
Again the use of (3.12) leads to

E(t0) ≥ ϕ(||∇u(t0)||α) > ϕ(λ2) = E(0).

This is impossible since E(t) ≤ E(0), for all t ≥ 0. Thus (i) is established.
Next, we will prove the (ii). From (3.12), we get

d1
p ||u(t)||pp ≥ (a0 −

µ

µ0
)

1

α
||∇u(t)||αα − E(t)

≥ (a0 −
µ

µ0
)

1

α
||∇u(t)||αα − E0

≥ (a0 −
µ

µ0
)

1

α
λα2 − ϕ(λ2) = d1B

p
1

1

p
λp2.

Thus, the proof is complete. 2

In the remainder of this section, we consider initial values (λ0, E0) ∈ Σ. We set

(3.13) H(t) = E1 − E(t), t ≥ 0.
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Then we have the following Lemma.

Lemma 3.3. For all t ∈ J , we have

(3.14) 0 < H(0) ≤ H(t) ≤ d1

p
||u(t)||pp.

Proof. From Lemma 3.1, we see that H ′(t) ≥ 0. Thus, we deduce

(3.15) H(t) ≥ H(0) = E1 − E(0) > 0, ∀t ≥ 0.

From (3.12), we obtain

H(t) = E1 − E(t)

≥ ϕ(λ1)− (a0 −
µ

µ0
)

1

α
||∇u(t)||αα +

d1

p
||u(t)||pp

= (a0 −
µ

µ0
)

1

α
(λα1 − ||∇u(t)||αα)− d1B

p
1

1

p
λp1 +

d1

p
||u(t)||pp.

From (3.8), ||∇u(t)||α > λ1, we get

(3.16) H(t) ≤ d1

p
||u(t)||pp.

Thus, combing (3.15) and (3.16) we obtain (3.14). 2

Now, we define

L(t) = H1−σ(t) + ε

∫
Ω

u(t)|ut(t)|l−2ut(t)dx

+
µ1ε

2

∫
Ω

u2
t (t)dx−

ε

2

∫
Γ1

h(x)k(x)y2(t)dΓ

−ε
∫

Γ1

h(x)u(t)y(t)dΓ,(3.17)

for ε small to be chosen later and

(3.18) 0 < σ ≤ min{α− 2

p
,
α− β
p(β − 1)

,
α−m
p(m− 1)

,
α− l
αl

,
k

εα
− 1}.

By taking a derivative of (3.17) we have

L′(t) = (1− σ)H−σ(t)H ′(t) + ε||ut(t)||ll + ε

∫
Ω

u(t)(|ut(t)|l−2ut(t))tdx(3.19)

+µ1ε

∫
Ω

u(t)ut(t)dx− ε
∫

Γ1

h(x)k(x)y(t)yt(t)dΓ

−ε
∫

Γ1

h(x)ut(t)y(t)dΓ− ε
∫

Γ1

h(x)u(t)yt(t)dΓ.
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By using (2.6)–(2.10) and estimate (3.19), we find

L′(t) = (1− σ)H−σ(t)H ′(t) + ε||ut(t)||ll

+ε

∫
Ω

(
4ut(t) + div(a(x)|∇u(t)|α−2∇u(t))

+div(|∇ut(t)|β−2∇ut(t))−Q(x, t, ut)

−µ1ut(t)− µ2z(x, 1, t) + f(x, u(t))
)
u(t)dx

+µ1ε

∫
Ω

u(t)ut(t)dx− ε
∫

Γ1

h(x)k(x)y(t)yt(t)dΓ

−ε
∫

Γ1

h(x)ut(t)y(t)dΓ− ε
∫

Γ1

h(x)u(t)yt(t)dΓ

= (1− σ)H−σ(t)H ′(t) + ε||ut(t)||ll

−ε
∫

Ω

∇ut(t)∇u(t)dx− ε
∫

Ω

a(x)|∇u(x, t)|αdx

−ε
∫

Ω

|∇ut(t)|β−2∇ut(t)∇u(t)dx

+ε

∫
Γ1

(∂ut(t)
∂ν

+ |∇u(t)|α−2 ∂u(t)

∂ν
+ |∇ut(x, t)|β−2 ∂ut(x, t)

∂ν

)
u(t)dΓ

−ε
∫

Ω

Q(x, t, ut)u(t)dx+ ε

∫
Ω

f(x, u(x, t))u(t)dx

−µ1ε

∫
Ω

u(t)ut(t)dx− µ2ε

∫
Ω

z(x, 1, t)u(t)dx

+µ1ε

∫
Ω

u(t)ut(t)dx− ε
∫

Γ1

h(x)k(x)y(t)yt(t)dΓ

−ε
∫

Γ1

h(x)ut(t)y(t)dΓ− ε
∫

Γ1

h(x)u(t)yt(t)dΓ

= (1− σ)H−σ(t)H ′(t) + ε||ut(t)||ll

−ε
∫

Ω

∇ut(t)∇u(t)dx− ε
∫

Ω

a(x)|∇u(x, t)|αdx

−ε
∫

Ω

|∇ut(t)|β−2∇ut(t)∇u(t)dx

−ε
∫

Ω

Q(x, t, ut)u(t)dx+ ε

∫
Ω

f(x, u(x, t))u(t)dx

−µ2ε

∫
Ω

z(x, 1, t)u(t)dx+ ε

∫
Γ1

h(x)q(x)y2(t)dΓ(3.20)

Exploiting Hölder’s and Young’s inequality and (H3), for any δ, µ, η, ρ > 0, we
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deduce ∫
Ω

Q(x, t, u)u(t)dx ≤
∫

Ω

|u(t)|[d(x, t)]1/m[Q(x, t, ut(t))ut(t)]
1/m′dx

≤ δm

m

∫
Ω

|u(t)|md(x, t)dx+
m− 1

m
δ−

m
m−1

∫
Ω

Q(x, t, ut(t))ut(t)dx

≤ δm

m
||u(t)||mp ||d(t)||p/(p−m) +

m− 1

m
δ−

m
m−1

∫
Ω

Q(x, t, ut(t))ut(t)dx

≤ δmC

m
||u(t)||mp +

m− 1

m
δ−

m
m−1

∫
Ω

Q(x, t, ut(t))ut(t)dx.(3.21)

By Young’s inequality, we get∫
Ω

∇ut(t)∇u(t)dx ≤ 1

4µ

∫
Ω

|∇u(t)|2dx+ µ

∫
Ω

|∇ut(t)|2dx,(3.22)

∫
Ω

|∇ut(t)|β−2∇ut(t)∇u(t)dx ≤ ηβ

β

∫
Ω

|∇u(t)|βdx(3.23)

+
β − 1

β
η−

β
β−1

∫
Ω

|∇ut(t)|βdx,

µ2

∫
Ω

u(t)z(x, 1, t)dx ≤ |µ2|
4ρ

∫
Ω

u2(t)dx+ |µ2|ρ
∫

Ω

z2(x, 1, t)dx.(3.24)

A substitution of (3.21)− (3.24) into (3.20) yields

L′(t) ≥ (1− σ)H−σ(t)H ′(t) + ε||ut(t)||ll

− ε

4µ

∫
Ω

|∇u(t)|2dx− εµ
∫

Ω

|∇ut(t)|2dx

−ε
∫

Ω

a(x)|∇u(t)|αdx

−εη
β

β

∫
Ω

|∇u(t)|βdx− ε(β − 1)

β
η−

β
β−1

∫
Ω

|∇ut(t)|βdx

−εδ
mC

m
||u(t)||mp −

ε(m− 1)

m
δ−

m
m−1

∫
Ω

Q(x, t, ut(t))ut(t)dx

−ε|µ2|
4ρ

∫
Ω

u2(t)dx− ε|µ2|ρ
∫

Ω

z2(x, 1, t)dx

+ε

∫
Ω

f(x, u(x, t))u(t)dx+ ε

∫
Γ1

h(x)q(x)y2(t)dΓ(3.25)

Therefore, we choose δ, µ, η, and ρ so that

δ−
m
m−1 = M1H

−σ(t), µ = M2H
−σ(t)

η−
β
β−1 = M3H

−σ(t), ρ = M4H
−σ(t),(3.26)
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for M1,M2,M3,M4 to be specified later. Using (2.10), (3.25) and (3.26), we arrive
at

L′(t) ≥ (1− σ)H−σ(t)H ′(t) + ε||ut(t)||ll −
ε

4M2
Hσ(t)

∫
Ω

|∇u(t)|2dx

−ε
∫

Ω

a(x)|∇u(t)|αdx− εM
−(β−1)
3

β
Hσ(β−1)(t)

∫
Ω

|∇u(t)|βdx

−εM
(m−1)
1 C

m
Hσ/(m−1)(t)||u(t)||mp −

ε|µ2|
4M4

Hσ(t)

∫
Ω

u2(t)dx

−ε
[
M2

∫
Ω

|∇ut(t)|2dx+
(β − 1)

β
M3

∫
Ω

|∇ut(t)|βdx

+
(m− 1)

m
M1

∫
Ω

Q(x, t, ut(t))ut(t)dx+ |µ2|M4

∫
Ω

z2(x, 1, t)dx
]
H−σ(t)

+ε

∫
Ω

f(x, u(x, t))u(t)dx+ ε

∫
Γ1

h(x)q(x)y2(t)dΓ.(3.27)

If M = M2 + (β−1)M3

β + (m−1)M1

m + |µ2|M4, then (3.27) takes the form

L′(t) ≥ (1− σ − εM)H−σ(t)H ′(t) + ε||ut(t)||ll −
ε

4M2
Hσ(t)

∫
Ω

|∇u(t)|2dx

−ε
∫

Ω

a(x)|∇u(t)|αdx− εM
−(β−1)
3

β
Hσ(β−1)(t)

∫
Ω

|∇u(t)|βdx

−εC
m
M

(m−1)
1 Hσ/(m−1)(t)||u(t)||mp −

ε|µ2|
4M4

Hσ(t)

∫
Ω

u2(t)dx(3.28)

+εMH−σ(t)

∫
Γ1

h(x)k(x)y2
t (t)dΓ

+ε

∫
Ω

f(x, u(t))u(t)dx+ ε

∫
Γ1

h(x)q(x)y2(t)dΓ.

From(3.14),(3.18), the embedding W 1,α(Ω) ↪→ Lp(Ω) and

zδ ≤ (1 + 1/a)(z + a),∀z > 0, 0 < δ ≤ 1, a > 0,

we have (see[15])

Hσ(t)

∫
Ω

|∇u(t)|2dx ≤ c(Ω)
(Bp1d1

p

)σ(∫
Ω

|∇u(t)|αdx
)(pσ+2)/α

≤ d
(Bp1d1

p

)σ(∫
Ω

|∇u(t)|αdx+H(t)
)
,(3.29)
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Hσ(β−1)(t)

∫
Ω

|∇u(t)|βdx ≤ c(Ω)
(Bp1d1

p

)σ(β−1)(∫
Ω

|∇u(t)|αdx
)(pσ(β−1)+β)/α

≤ d
(Bp1d1

p

)σ(β−1)(∫
Ω

|∇u(t)|αdx+H(t)
)
,(3.30)

Hσ(m−1)||u(t)||mp ≤ c(Ω)
(Bp1d1

p

)σ(m−1)

Bm1

(∫
Ω

|∇u(t)|αdx
)(σp(m−1)+m)/α

≤ d
(Bp1d1

p

)σ(m−1)

Bm1

(∫
Ω

|∇u(t)|αdx+H(t)
)
,(3.31)

and

Hσ(t)

∫
Ω

|∇u(t)|2dx ≤ c(Ω)
(
Bp1d1
p

)σ
B2

1

( ∫
Ω
|∇u(t)|αdx

)(σp)/α

≤ d
(
Bp1d1
p

)σ
B2

1

( ∫
Ω
|∇u(t)|αdx+H(t)

)
,(3.32)

for all t ≥ 0, where d = c(Ω)[1 + 1/H(0)]. Inserting estimates (3.29)-(3.32) into
(3.28), we obtain

L′(t) ≥
(

1− σ)− εM
)
H−σ(t)H ′(t) + kH(t) + (ε+

k(l − 1)

l
)||ut(t)||ll

− εc2
M2

(∫
Ω

|∇u(t)|αdx+H(t)
)
− ε

∫
Ω

a(x)|∇u(t)|αdx

− εc3

Mβ−1
3

(∫
Ω

|∇u(t)|αdx+H(t)
)

+
k

α

∫
Ω

a(x)|∇u(t)|αdx

− εc1

Mm−1
1

(∫
Ω

|∇u(t)|αdx+H(t)
)

− εc4
M4

(∫
Ω

|∇u(t)|αdx+H(t)
)

+ε

∫
Ω

f(x, u(t))u(t)dx+ ε

∫
Γ1

h(x)q(x)y2(t)dΓ

−k
∫

Ω

Φ(x, u(t))dx+ k
ξ

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

+
k

2

∫
Γ1

h(x)q(x)y2(t)dΓ− kE1 + εMH−σ(t)

∫
Γ1

h(x)k(x)y2
t (t)dΓ,

for some constant k and

c1 =
cd

m

(Bp1d1

p

)σ/(m−1)

Bm1 , c2 =
d

4

(Bp1d1

p

)σ
,

c3 =
d

β

(Bp1d1

p

)σ(β−1)

, c4 = d
(Bp1d1

p

)σ
B2

1 .



644 Y. H. Kang and J.-Y. Park

From (2.17),(2.18) and Lemma 3.2, we have

−kE1 ≥ −kE1B
−p
1 λ−p1 ||u(t)||pp = −kd1(

1

α
− 1

p
)||u(t)||pp.

From (2.2), we can choose k satisfying

αε ≤ k < pεmin
{ αd2

(p− α)d1
, 1
}

and

ε

∫
Ω

f(x, u(t))u(t)dx− k
∫

Ω

Φ(x, u(t))dx− kE1

≥ εd2||u(t)||pp − kd1(
1

α
− 1

p
)||u(t)||pp ≥ 0.

Thus, it follows that

L′(t) ≥
(

1− σ)− εM
)
H−σ(t)H ′(t) + (ε+

k(l − 1)

l
)||ut(t)||ll

ε
(k
ε
− c2
M2
− c3

Mβ−1
3

− c1

Mm−1
1

− c4
M4

)
H(t)

+ε
(

(
k

εα
− 1)a0 −

c2
M2
− c3

Mβ−1
3

− c1

Mm−1
1

− c4
M4

)∫
Ω

|∇u(t)|αdx

+ε

∫
Γ1

h(x)q(x)y2(t)dΓ +
kξ

2

∫
Ω

∫ 1

0

z(x, ρ, t)dρdx

+
k

2

∫
Γ1

h(x)q(x)y2(t)dΓ + εMH−σ(t)

∫
Γ1

h(x)k(x)y2
t (t)dΓ.

At this point, choosing M1,M2,M3,M4 large enough and ε sufficiently small and
using

εMH−σ(t)

∫
Γ1

h(x)k(x)y2
t (t)dΓ ≥ 0,

we deduce

L′(t) ≥
(

1− σ)− εM
)
H−σ(t)H ′(t) + γε

(
H(t) + ||ut(t)||ll

+

∫
Ω

|∇u(t)|αdx+

∫
Γ1

h(x)q(x)y2(t)dΓ +

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx
)
,(3.33)

where γ is a positive constant (it is possible since k > εα). We choose ε sufficiently
small and 0 < ε < (1− σ)/M so that

L(0) = H1−σ(0) + ε

∫
Ω

u0|u1|l−2u1dx+
µ1ε

2

∫
Ω

u2
0dx

− ε

2

∫
Γ1

h(x)k(x)y2
0dΓ− ε

∫
Γ1

h(x)u0y0dΓ > 0.
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Then from(3.33) we get

L(t) ≥ L(0) ≥ 0, ∀t ≥ 0,

and

L′(t) ≥ γε
(
H(t) + ||ut(t)||ll

+

∫
Ω

|∇u(t)|αdx+

∫
Γ1

h(x)q(x)y2(t)dΓ +

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx
)
.(3.34)

On the other hand, from(3.17) and h(x), q(x) > 0, we have

L(t) ≤ H1−σ(t) + ε

∫
Ω

u(t)|ut(t)|l−2ut(t)dx+
µ1ε

2

∫
Ω

u2(t)dx− ε
∫

Γ1

h(x)u(t)y(t)dΓ.

Then the above inequality leads to

L
1

1−σ (t) ≤
[
H1−σ(t) + ε

∫
Ω

u(t)|ut(t)|l−2ut(t)dx

+
µ1ε

2

∫
Ω

u2(t)dx− ε
∫

Γ1

h(x)u(t)y(t)dΓ
]1/(1−σ)

≤ C(ε, µ1, σ)
[
H(t) + |

∫
Ω

u(t)|ut(t)|l−2ut(t)dx|
1

1−σ

+ (

∫
Ω

u2(t)dx)
1

1−σ + |
∫

Γ1

h(x)u(t)y(t)dΓ|
1

1−σ

]
.(3.35)

Next, using Hölder’s inequality, the embedding W 1,α(Ω) ↪→ Ll(Ω), α > l and
Young’s inequality, we derive∣∣∣ ∫

Ω

u(t)|ut(t)
∣∣∣l−2

ut(t)dx| ≤ (

∫
Ω

|u(t)|ldx)1/l(

∫
Ω

|ut(t)|ldx)(l−1)/l

≤ (

∫
Ω

|∇u(t)|αdx)1/α(

∫
Ω

|ut(t)|ldx)(l−1)/l

≤ c
[
(

∫
Ω

|∇u(t)|αdx)l(1−σ)/[l(1−σ)−(l−1)]α + (

∫
Ω

|ut(t)|ldx)(1−σ)
]
.

From (3.18) and (3.29), we obtain∣∣∣ ∫
Ω

u(t)|ut(t)|l−2ut(t)dx
∣∣∣1/(1−σ)

≤ c
[
(

∫
Ω

|∇u(t)|αdx)l/[l(1−σ)−(l−1)]α +

∫
Ω

|ut(t)|ldx
]

≤ c
[
(1 +

1

H(0)
)(

∫
Ω

|∇u(t)|αdx+H(t)) +

∫
Ω

|ut(t)|ldx
]
.
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Therefore, there exists a positive constant C ′ such that for all t ≥ 0,∣∣∣ ∫
Ω

u(t)|ut(t)|l−2ut(t)dx
∣∣∣1/(1−σ)

≤ C ′
[
H(t)) + ||∇u(t)||αα + ||ut(t)||ll

]
.(3.36)

Furthermore, by the same method, we deduce∫
Γ1
h(x)u(t)y(t)dΓ =

∣∣∣ ∫
Γ1

h(x)q(x)

q(x)
u(t)y(t)dΓ

∣∣∣
≤ ||h||

1
2∞||q||

1
2∞

q0

(∫
Γ1

h(x)q(x)y2(t)dΓ
) 1

2
(∫

Γ1

u2(t)dΓ
) 1

2

.

Similarly, we find∫
Γ1
h(x)u(t)y(t)dΓ =

∣∣∣ ∫
Γ1

h(x)q(x)

q(x)
u(t)y(t)dΓ

∣∣∣
≤ ||h||

1
2∞||q||

1
2∞

q0

(∫
Γ1

h(x)q(x)y2(t)dΓ
) 1

2
(∫

Γ1

u2(t)dΓ
) 1

2

.

Using the embedding W 1,α
0 (Ω) ↪→ L2(Γ1) and Hölder’s inequality, we get∫

Γ1

h(x)u(t)y(t)dΓ ≤ c5
||h||

1
2∞||q||

1
2∞

q0

(∫
Γ1

h(x)q(x)y2(t)dΓ
) 1

2
(∫

Ω

|∇u(t)|αdx
) 1
α

.

where c5 is a embedding constant. Consequently, there exists a positive constant
c6 = c(||h||∞, ||q||∞, q0, σ, α) such that(∫

Γ1

h(x)u(t)y(t)dΓ
) 1

1−σ ≤ c6
(∫

Γ1

h(x)q(x)y2(t)dΓ
) 1

2(1−σ)
(∫

Ω

|∇u(t)|αdx
) 1
α(1−σ)

.

Using Young’s inequality, we write(∫
Γ1

h(x)u(t)y(t)dΓ
) 1

1−σ ≤ c7
[( ∫

Ω

|∇u(t)|αdx
) 2
α(1−2σ)

+

∫
Γ1

h(x)q(x)y2(t)dΓ
]
,

where c7 is a positive constant depending on c6 and α. Applying once again the
algebraic inequality (3.29) with z = ||∇u(t)||αα, ν = 2/[α(1 − 2σ)] and making use
of (3.18), we see that by the same method as above

(∫
Γ1

h(x)u(t)y(t)dΓ
) 1

1−σ ≤ c8
[
H(t) + ||∇u(t)||αα +

∫
Γ1

h(x)q(x)y2(t)dΓ
]
,

(3.37)

where c8 is a positive constant. Hence combining (3.35) − (3.37) and using α > 2,
we arrive at

L
1

1−σ (t) ≤ C∗
[
H(t) + ||ut(t)||ll + ||∇u(t)||αα(3.38)

+

∫
Γ1

h(x)q(x)y2(t)dΓ + +

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx
]
,∀ t ≥ 0,
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where C∗ is a positive constant. Consequently a combining of (3.34) and (3.38), for
some ξ > 0, we obtain

L′(t) ≥ ξL
1

1−σ (t), ∀ t ≥ 0.(3.39)

Integration of (3.9) over (0, t) yield

L
σ

1−σ (t) ≥ 1

L
−σ
1−σ (0)− ξσ

1−σ t
,∀ t ≥ 0.

Therefore L(t) blow up in finite time

T ≤ T ∗ =
1− σ

ξσL
σ

1−σ (0)
.

Thus the proof of Theorem 2.1 is complete. 2
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