• 제목/요약/키워드: Acoustic environment

Search Result 681, Processing Time 0.026 seconds

Development of High Intensity Progressive Wave Tube (고에너지 음향환경시험 튜브 개발)

  • K.Kim, Young-Key;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun;Im, Jong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.962-965
    • /
    • 2005
  • A high intensity progressive wave tube is installed at Korea Aerospace Research Institute (KARI) for acoustic environmental tests. The test facility has 700 mm x 800 mm cross-sectional area, and provides acoustic environment of 165 dB over the frequency range of $25Hz{\sim}10,000Hz$. The facility consists of a 6 m long acoustic wave tube, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of the facility and power generation systems are controlled to meet the requirement of the test. The shape and length of the tube has been designed by using the size of test objects and the wave propagation characteristics of the tube. The capacity of acoustic power generation systems is determined by the energy conversion of acoustic wave and the efficiency of acoustic modulators. Moreover, the paper introduces test run results of the tube. Overall of 163dB has been generated by using the test facility.

  • PDF

Design of High Intensity Acoustic Test Facility to Generate Required Sound Pressure Level and Spectrum (설정 음압 및 스펙트럼 재현을 위한 음향 환경 시험 챔버의 기본 설계 변수 선정)

  • 김영기;우성현;김홍배;문상무;이상설
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.867-872
    • /
    • 2002
  • A high intensity acoustic test facility is constructed at Korea Aerospace Research Institute (KARI) by 2003. The reverberant chamber of the facility has a volume of 1,228 cubic meters and shall provide an acoustic environment of 152 dB over the frequency range of 25 Hz to 10,000 Hz. The facility consists of a large scaled reverberant chamber, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of a chamber and power generation systems are controlled to meet the requirement of the test. The volume of a reverberant chamber is controlled by the size of test objects and the reverberant characteristics of a chamber. The capacity of acoustic power generation systems is determined by the energy absorption of a chamber and the efficiency of acoustic modulators. Simple math is employed to calculate the required power of acoustic modulators. Moreover, the paper explains how the distribution of sound pressure level at low frequency is checked by analytical and numerical methods.

  • PDF

A Study of Echo Reduction of Underwater Acoustic Material Considering Ocean Condition (수중환경을 고려한 수중 음향재료의 반향음 감소성능 연구)

  • Seo, Young Soo;Ham, Il Bae;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.377-384
    • /
    • 2014
  • The requirement of acoustic material which is used in underwater environment more increases. The material is used to reduce acoustic signature and radiate noise for underwater vehicle. Underwater acoustic material was made by viscoelastic material such as a rubber and a polyurethane etc. The mechanical and acoustic characteristics of these material change with hydrostatic pressure. In order to increase an acoustic performance according to hydrostatic pressure, several kinds of scatterers were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques of underwater acoustic material with hydrostatic pressure were introduced and proposed. The specimens for pulse tube test were made and echo reductions were calculated and measured with hydrostatic pressure. Also the characteristics of echo reduction of the specimens with hydrostatic pressure were obtained and discussed.

  • PDF

A Study on the Echo Reduction Performance of Underwater Acoustic Material (수중 음향재료의 반향음 감소성능 연구)

  • Seo, Young Soo;Ham, Il Bae;Jung, Woo Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.868-875
    • /
    • 2014
  • The requirement of acoustic material which is used in underwater environment more increases. The material is used to reduce acoustic signature and radiate noise for underwater vehicle. Underwater acoustic material was made by viscoelastic material such as rubber and polyurethane etc. The mechanical and acoustic characteristics of these material change with hydrostatic pressure. In order to improve an acoustic performance according to hydrostatic pressure, several kinds of scatterers were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques of underwater acoustic material with hydrostatic pressure were introduced and proposed. The specimens for pulse tube test were made and echo reductions were calculated and measured with hydrostatic pressure. Also the characteristics of echo reduction of the specimens with hydrostatic pressure were obtained and discussed.

The relevancy between physical index and subjective appraisal of class (강의실내의 물리지표와 주관적평가와의 상관관계)

  • Lee, Chai-Bong;Kim, Yong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.374.1-374
    • /
    • 2002
  • The eventual purpose of this research is to make optimum standards for acoustic-environment by using not only physical characteristics but also subjective appraisals. First, basic Physical data were measured which were necessary to establish standards for acoustic environment in campus buildings, TSP has used to measure sound levels, reverberation times, clearness indexes, and speech-transmission-index. (omitted)

  • PDF

Bearing tracking algorithm appropriate for underwater environment (수중환경에 적합한 방위각 추적 알고리즘)

  • 허용석;김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.558-563
    • /
    • 1992
  • Bearing information of target is used critically for target tracking in underwater environment. In passive sonar, target bearing measurements are obtained by processing the acoustic signal emanating from the target. PDA tracking algorithm is usually applied in this case since bearing measurements have several peaks due to interference with other acoustic sources or reflections from underwater media. In this paper, we propose a modified PDA algorithm adopting new probabilistic distributions of the number, position, and amplitude of peaks based on the analysis of real data. This algorithm is tested on real and artificially generated data. The computer simulation result shows improvement of the tracking performance.

  • PDF

Acoustic Loads Test of the Upper Stage of KSLV-I (소형위성발사체 상단부의 음향하중시험)

  • Chun, Young-Doo;Park, Jong-Chan;Chung, Eui-Seung;Park, Jung-Joo;Cho, Kwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.224-227
    • /
    • 2007
  • This paper introduces the results of acoustic loads test conducted on the upper stage assembly of KSLV-I, which is the first Korea space launch vehicle. A launch vehicle and its payloads are subjected to severe acoustic pressure loading when they lift off and ascent during the transonic periods. Acoustic loadings are spreaded out broad frequncy-spectrum up to 10,000Hz. Acoustic loads are a primary source of structural random vibration of the upper stage and payloads. Therefore, in order to verify the structural integrity of the upper stage assembly of KSLV-I and the survivability of its components under severe random vibration environment, acoustic loads test is conducted in the high intensity acoustic chamber with 142dB (overall SPL). The results show the structural design and component random vibration specifications well meet with the environmental requirements.

  • PDF

A Study on Valuation about Acoustic Performance utilizing Auditory-Evocation for Grand Performance Hall of G Art Hall (가청화를 이용한 G예술회관의 대공연장 음향 성능평가에 관한 연구)

  • Kim, Nam-Don;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.623-627
    • /
    • 2007
  • In case of the Grand Performance Hall, in view of its distinctiveness, since various Assembly Activity as well as Lecture together with the use for Music are important besides the purpose of Performance itself, the consideration with regard to the sound environment which enables to minimize the acoustic defect has appeared on the stage as an essential factor. On this viewpoint, this Study has attempted to examine the acoustic satisfaction degree and its response regarding to the grand performance hall by means of the measurement and valuation about the psychological volume of human-being using the auditory-evoked technology that possible to experience the Virtual Sound Field at the designing stage, after practice of the optimized acoustic design for the object of the grand performance hall on the step of construction. As the result of auditory-evocation, it was known that the valuation about the acoustic performance after reformation has been improved affirmatively than before reformation. It is considered that such outcome of the study could be utilized as the useful material that enables to improve the curtailment effect of construction cost and the acoustic performance, by means of the presupposition control about the acoustic problem from the stage of design, for the occasion when the similar Performance Hall is planning to build, hereafter.

  • PDF

Acoustic parabolic equation model with a directional source (방향성 있는 음원이 적용된 음향 포물선 방정식 모델)

  • Lee, Keunhwa;Na, Youngnam;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The acoustic parabolic equation method in the ocean is an efficient technique to calculate the acoustic field in the range-dependent environment, emanating from a point source. However, we often need to use the directional source with a main beam in the practical problem. In this paper, we present two methods to implement the directional source in the acoustic parabolic equation code easily. One is simply to filter the Delta function idealized as an omni-directional point source. Another method is based on the rational filtering of the self-starter solution. It has a limitation not to separate the up-going and the down-going wave for the depth, but would be useful in implementing the mode propagation. Numerical examples for validation are given in the Pekeris environment and the deep sea environment.

Implementation of Acoustic Properties Measurement System Based on LabVIEW Using PXI for Marine Sediment (PXI를 이용한 LabVIEW기반 해양퇴적물의 음향특성 측정시스템 개발)

  • Park, Ki-Ju;Kim, Dae-Choul;Lee, Gwang-Soo;Bae, Sung Ho;Kim, Gil Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • A previous velocity measurement system for marine sediment had several problems such as the errors occurred when picking first arrival time and the inconvenient measurement procedure. In order to resolve these problems, we developed a new acoustic properties measurement system by using PXI (PCI eXtentions for Instrumentation) module based on LabVIEW. To verify the new system, we measured the velocity and attenuation of sediment using the new system in a parallel with the previous system under the same experimental environment. The result of measurement showed 1~2% margin of error for the velocity as well as similar attenuation values. We concluded that the new system can efficiently measure the acoustic properties of marine sediment. It also has an advantage to construct the database of acoustic data and raw signal.