• Title/Summary/Keyword: Acoustic Beamforming

Search Result 74, Processing Time 0.029 seconds

Experiments on the noise source identification from a moving vehicle (이동하는 운송체의 외부소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.238-243
    • /
    • 2008
  • Several experimental techniques for identifying the noise sources distributed over a moving vehicle have been developed recently and are used to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car passing by. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured acoustic signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

Leakage Localization with an Acoustic Array that Covers a Wide Area for Pipeline Leakage Monitoring in a Closed Space (닫힌 공간에서의 광역배관 누출 감시를 위한 배열센서를 이용한 누설 위치 검출)

  • Park, Choon-Su;Jeon, Jong-Hoon;Park, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.422-429
    • /
    • 2013
  • It is of great importance to localize leakages in complex pipelines for assuring their safety. A sensor array that can detect where leakages occur enables us to monitor a wide area with a relatively low cost. Beamforming is a fast and efficient algorithm to estimate where sources are, but it is generally made use of in free field condition. In practice, however, many pipelines are placed in a closed space for the purpose of safety and maintenance. This leads us to take reflected waves into account to the beamforming for interior leakage localization. Beam power distribution of reflected waves in a closed space is formulated, and spatial average is introduced to suppress the effect of reflected waves. Computer simulations and experiments ensure how the proposed method is effective to localize leakage in a closed space for structural health monitoring.

DOA(Direction of Arrival) Estimation based Beamforming technique for VBeam Reception Performance Enhancement (VBeam 수신 성능 개선을 위한 입사각 추정 기반의 빔형성 알고리즘 연구)

  • Lee, Jae-Eun;Shim, Tae-Bo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.212-221
    • /
    • 2010
  • The bubbles could be created from multiple source in the surface of ocean. The bubbles which are created like this affect to the intensity and the sound speed of acoustic wave which are used from the ocean. From the research, it observed Reverberation from the sea surface, using Vbeam transmission and reception equipment that was a cross-shaped Array, from 2008 July 2nd to July 3rd at 4Km from the East Sea Mookho port. It is difficult to analyze data because the received signal has ambient noise and occurrence ISI(Inter Symbol Interference) for multipath. This paper remove that ambient noise and ISI using the directions of arrival beamforming and the filter and sum beamforming. After beamforming, a following DFE(Decision Feedback Equalizer) removes the remaining multipath components. Experimental results show that the proposed technique reduce the errors caused by ISI.

An Array Beampattern Synthesis Using Adaptive Array Method and Partial Constrained Adaptation (최소 자승 평균오차와 부분 적응을 사용한 배열 빔 형성기법)

  • Lim Jun-Seok;Choi Nakjin;Sung Koeng-Mo;Kim Hyun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.570-575
    • /
    • 2004
  • In the underwater acoustic systems. we can receive signals and retrieve information about a target by using a beamforming method. The most important thing in the beamforming is finding the way to optimize the mainlobe beamwidth and the sidelobe level to the desired value. One of the prominent results of beamforming method. which has been studied. is Philip's weighting function method(1) . Philip's method adaptively adjusts its weights of array to meet the desired mainlobe beamwidth and sidelobe level. It is very similar to the design method in adaptive filter. However. this method cannot easily bring us to the desired sidelobe level due to complementary relation between mainlobe beamwidth and sidelobe level. In this paper, we propose a new algorithm using partial constrained adaptation. This method makes us circumvent the above problem and meet the specification of design easily. The proposed algorithm presents a Pattern synthesis that designer can easily control the mainlobe beamwidth and the sidelobe level to the desired value while calculation time to converge is decreasing.

A Study on the Fluid Leakage Evaluation for Power Plant Valve Using Acoustic Imaging Technique (음향 영상화기법을 이용한 발전용 밸브 유체누설평가 연구)

  • Lee, S G.;Lee, S.K.;Kim, D.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Image processing has provided powerful techniques to extract from the acoustic signals the desired information on evaluation for leakage existence, leakage rate, and searching for leakage location, etc. The imagery NDE data available can add additional and significant dimension in nondestructive evaluation(NDE) information and thus for exploiting in applications. To extract such information the use of advanced image processing techniques is much needed. In recent years, there has been much increased use of acoustic signal image processing techniques in acoustic NDE. This approach will increase the efficiency of inspection procedures and reduce inspection time. In this paper we are concerned only with This paper is concerned mainly with the use of advanced image processing techniques in valve leakage detection and advanced image restoration and enhancement methods, which attempt to evaluate promptly by a visualization method the acoustic sources while detecting the valve leakage.

Bearing Estimation of Narrow Band Acoustic Signals Using Cardioid Beamforming Algorithm in Shallow Water

  • Chang, Duk-Hong;Park, Hong-Bae;Na, Young-Nam;Ryu, Jon-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.71-80
    • /
    • 2002
  • This paper suggests the Cardioid beamforming algorithm of the doublet sensors employing DIFAR (directional frequency analysis and recording) sensor signals in the frequency domain. The algorithm enables target bearing estimation using the signals from directional sensors. The algorithm verifies its applicability by successfully estimating bearings of a target projecting ten narrow-band signals in shallow water. The estimated bearings agree very well with those from GPS (global positioning system) data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1°∼ 6.7°and 13.3∼43.6°, respectively. Estimation errors are caused by SNR (signal to noise ratio) degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Adaptive Beamforming Method for Turning Towed Line Array SONAR (회전하는 견인 선배열 소나의 적응 빔 형성 기법)

  • Lee, Seokjin;Park, Kyung-Min;Chung, Suk-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.383-391
    • /
    • 2014
  • In order to detect underwater acoustic signals, various SONAR array types have been developed, including towed line array SONAR system (TASS). However, the TASS suffers from performance degradation which is caused by aperture deformation during a turn, because the TASS have a long-aperture array. A parabolic array model for turning TASS have been developed to solve the degradation problem occurred during a turn. In this paper, adaptive beamforming system is developed using the parabolic TASS model to cancel interference signals. The developed beamforming system is based on generalized sidelobe canceller (GSC) structure and self-tuning adaptive algorithm.

High Directivity Sound Beamforming Algorithm (방향성이 높은 사운드 빔 형성 알고리즘)

  • Kim, Seona-Woo;Hur, Yoo-Mi;Park, Young-Chul;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • This paper proposes a technique of sound beamforming that can generate high-directive sound beams, and this paper also presents applications of the proposed algorithm to multi-channel 3D sound systems. The proposed algorithm consists of two phases: first, optimum weights maximizing a sound pressure level ratio between the target and control acoustic regions are designed, and later, the directivity of the pre-designed sound beam is iteratively enhanced by modifying the covariance matrix. The proposed method was evaluated under various situations, and the results showed that it could provide more focused sound beams than the conventional methods.

Implementation of the omnidirectional target bearing detector utilizing towed linear arrays (예인선배열 센서를 이용한 전방위 표적방위 탐지기 구현)

  • 이성은;천승용;황수복;이형욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise(S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. Detection of modern underwater targets is becoming increasingly difficult as noise reduction technology leads to considerably low-level acoustic emissions. Therefore, the improvement of beamforming is very important to detect modern underwater targets at the long range in the complex environmental sea. Also, to react to the fast attack mobiles such as torpedoes, port and starboard discrimination is required to be performed very quickly. In this paper, we proposed the implementation of omnidirectional target bearing detector without port and starboard ambiguity to detect effectively the low-level underwater targets. The port and starboard discrimination is performed by cardioid processing and the improvement of beamforming utilizes the cross correlation matrix of individual hydrophone pairs of linear array sensors. The sea test result shows that the system implemented is good for the detection of the low-level underwater targets.

Experiments on the Noise Source Identification from a Moving Vehicle (주행하는 자동차 외부 소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.911-915
    • /
    • 2004
  • Recently, several experimental techniques for identifying the noise sources distributed over a moving vehicle are being developed and used in order to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car moving at constant speed. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The sound pressure are measured with an spiral array system composed of 26 microphones and a pair of photo sensors are used to measure the. vehicle speed. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured pressure signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

  • PDF