DOI QR코드

DOI QR Code

Adaptive Beamforming Method for Turning Towed Line Array SONAR

회전하는 견인 선배열 소나의 적응 빔 형성 기법

  • 이석진 (경기대학교 전자공학과) ;
  • 박경민 (해군사관학교 무기체계공학과) ;
  • 정석문 (해군사관학교 무기체계공학과)
  • Received : 2014.08.07
  • Accepted : 2014.09.18
  • Published : 2014.11.30

Abstract

In order to detect underwater acoustic signals, various SONAR array types have been developed, including towed line array SONAR system (TASS). However, the TASS suffers from performance degradation which is caused by aperture deformation during a turn, because the TASS have a long-aperture array. A parabolic array model for turning TASS have been developed to solve the degradation problem occurred during a turn. In this paper, adaptive beamforming system is developed using the parabolic TASS model to cancel interference signals. The developed beamforming system is based on generalized sidelobe canceller (GSC) structure and self-tuning adaptive algorithm.

수중의 음향 신호를 탐지하기 위하여 다양한 배열 형태를 가지는 소나가 개발되어 왔으며, 그 중 하나로 견인선배열 소나가 널리 사용된다. 견인 선배열 소나는 매우 긴 형태의 배열을 사용하므로, 회전에 의한 형상 왜곡에 의해 성능이 저하되는 단점이 있다. 이를 해결하기 위하여 회전하는 견인 선배열 소나에 대한 포물선 형태의 형상 모델을 이용하는 기법이 고안되었다. 본 논문에서는 포물선 모델을 이용하여 간섭 신호를 제거하는 적응 빔 형성기 설계 기법을 제안한다. 고안된 빔형성기 시스템은 일반화된 부엽 제거기 구조와 자가 조율 시스템에 기반을 두어 개발되었다.

Keywords

References

  1. S. Haykin, Adaptive Filter Theory, 4th ed. (Prentice Hall, New Jersey, 2002), pp. 120-126.
  2. K.-M. Park, "Beam pattern synthesis based on shape model of turning towed line array SONAR" (in Korean), M.S. Thesis, Seoul National University (2012).
  3. P. Gerstoft, W. S. Hodgkiss, W. A. Kuperman, H. Song, M. Sidenius, and P. L. Nielsen, "Adaptive beamforming of towed array during a turn," IEEE J. Oceanic. Eng. 28, 44-54 (2003). https://doi.org/10.1109/JOE.2002.808203
  4. S. Lee, J. Lim, and K.-M. Sung, "MAFF-RLS broadband microphone GSC for non-stationary interference cancellation" (in Korean), J. Acoust. Soc. Kr. 28, 520-525 (2009).
  5. N. Jablon, "Steady state analysis of the generalized sidelobe canceller by adaptive noise cancelling techniques," IEEE Trans. Antennas. Propag. 34, 330-337 (1986). https://doi.org/10.1109/TAP.1986.1143833
  6. W. Liu, S. Weiss, and L. Hanzo, "A novel method for partially adaptive broadband beamforming," J. VLSI Signal Proc. 33, 337-344 (2003). https://doi.org/10.1023/A:1022288116263
  7. L. L. Horowitz, H. Blatt, W. G. Brodsky, and K. D. Senne, "Controlling adaptive antenna arrays with the sample matrix inversion algorithm," NASA STI/Recon Technical Report A, 80, 23283 (1979).
  8. S. Lee, J. Lim and K.-M. Sung, "A low-complexity AFF-RLS algorithm using a normalization technique," IEICE Electron. Expr. 6, 1774-17809 (2009). https://doi.org/10.1587/elex.6.1774
  9. J. Lim, S. Lee, and H.-S. Pang, "Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations," Neural Comput. Appl. 22, 569-576 (2013). https://doi.org/10.1007/s00521-012-0873-x
  10. K. -M. Park, S. Lee, and S.-M. Jung, "Steering beam pattern synthesis of line array SONAR using modified two-step least squares method" (in Korean), Journal of The Institute of Electronics and Information Engineers 51, 1356-1364 (2014).

Cited by

  1. Deploying autonomous sonobuoys optimally on a linear array via assignment problem pp.1433-3015, 2018, https://doi.org/10.1007/s00170-018-2348-4