• Title/Summary/Keyword: Acetate ion

Search Result 196, Processing Time 0.022 seconds

A Study on the Analysis of Methylprednisolone Acetate and its Metabolites in Rat Urine by LC/MS (LC/MS를 이용한 뇨중에서의 Methylprednisolone Acetate 및 그 대사물질 분석에 관한 연구)

  • Park, Song-Ja;Pyo, Hee Soo;Kim, Yun Je;Park, Seong Soo;Park, Jongsei
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.139-159
    • /
    • 1995
  • Positive ion mass spectra of some corticosteroids were obtained by using liquid chromatography-mass spectrometry(LC-MS). The base peak of each compound showed the protonated molecular ion [$MH^+$], ammonium adduct ion [${MNH_4}^+$] or [$MH^+-60$] ion according to its chemical structure and other characteristic mass ions were [$MH^+-18$], [${MNH_4}^+-18$] and so on. Several rat urinary metabolites of methylprednisolone acetate after the oral administration were detected by the thermospray LC-MS. The identified major metabolites were 20-hydroxymethylprednisolone(20-HMP), methylprednisolone(MP) and methylprednisone(11-KMP), which were supposed to be formed by deacetylation at the position of C-21, reduction at C-20, oxidation at C-11, or due to the bond cleavage between C-17 and C-20.

  • PDF

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Influence of Acetate on the Removal of Phenanthrene from Contaminated Soil using Fenton Reaction (Fenton Reaction을 이용한 Phenanthrene 오염 토양 처리에서 Acetate의 영향)

  • Seong, Jo-Seph;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • Due to rapid consumption of hydrogen peroxide, large amount of hydrogen peroxide is required when Fenton reaction is applied to the contaminated soil. In this study, acetate was employed as a ligand of $Fe^{2+}$ to enhance the efficiency of removal of phenanthrene by securing the stability of hydrogen peroxide. 0.5 ${\sim}$ 3 times of acetate (2${\sim}$12mM) was added to compare with molar concentration of $Fe^{2+}$. Low initial concentration of hydrogen peroxide was 0.7% to eliminate side effect of removal efficiency. The results showed that hydrogen peroxide lifetime was lasted up to 72 hours, or more than 50 times of normal lifetime. Phenanthrene removal efficiency was improved up to 70% due to stabilized hydrogen peroxide. Ferrous ion was oxidized to ferric ion and oxidation-reduction was repeated during the reaction. Finally ferric ion was reduced to ferrous by $HO_2$. It was confirmed that, due to the influence of hydrogen peroxide, pH was acid region and it remained at the range of 4 ${\sim}$ 5 when 8 mM or more of acetate was added. Acetate which was used as the ligand of Fe was also decomposed by Fenton reaction. The decomposition time of acetate was slower than phenanthrene. Therefore, it was able to come to the conclusion that phenanthrene was superior to acetate at the competition for decomposition. Through the results of this study, it was able to identify the possibilities to improve the efficiency of Fenton reaction in the contaminated soil and its economic feasibility, and to move to more realistic technique through research expanded to neutral pH region.

Total Flavonoid Content and Antioxidant Activities of Turmeric (Curcuma longa L.) Extracts in Jindo Korea (진도산 울금(Curcuma longa L.) 추출물의 총 플라보노이드 함량 및 항산화 활성)

  • Oh, Da-Young;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.393-401
    • /
    • 2019
  • The present study were conducted to determine physiological activities and antioxidant effects [2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, reducing power, Ferric Reducing Antioxidant Power (FRAP) and Fe2+ (ferrous ion) chelating capacity] of 70% methanol, chloroform:methanol, 2:1 volume ratio (CM) and ethyl acetate extract of turmeric (Curcuma longa L.). Bioactive compound of tannin $0.125{\pm}0.007mg$ Catechin Equivalent (CE)/g dry weight. Turmeric extracts yield were 70% methanol 16.54%, CM 5.64% and ethyl acetate 4.14%, respectively. Antioxidant activity of the samples exhibited a dose-dependent increase. Results showed that extraction solvent had significant effects on total flavonoid content and antioxidant effects of ethyl acetate. But ferrous ion-chelating capacity of 70% methanol extract was higher than CM and ethyl acetate extract. From the results of this study, turmeric can be utilized as a valuable and potential nutraceutical for the functional food industry.

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

Evaluation of Antioxidative activity of Korean Yam (Dioscorea batatas DECNE.) by n-Butanol and Ethyl Acetate Extracts

  • Duan, Yishan;Kim, Han-Soo;Kim, Gyeong-Hwuii
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.312-319
    • /
    • 2015
  • In this study, n-butanol and ethyl acetate extracts were prepared from raw yam (Dioscorea batatas DECNE.). Their antioxidative potencies were investigated employing various in vitro methods, such as ferrous ion chelating, ${\beta}$-carotene bleaching assay, lipid peroxidation inhibition and nitric oxide (NO) radical scavenging and nitrite scavenging activity. The n-butanol fraction was assayed to possess stronger antioxidant activity by ${\beta}$-carotene bleaching assay, lipid peroxidation inhibition and NO radical scavenging activity. However, ethyl acetate extract was more effective in chelating ferrous ion and scavenging nitrite. Based on the results obtained, yam is a potential active ingredient that could be applied in antioxidation as well as bio-health functional food to take a good part in prevention of human diseases and aging.

Study on the Removal of Heavy Metal Ion by Bark (수피(樹皮)를 이용(利用)한 중금속오염제거(重金屬汚染除去)에 관(關)한 연구(硏究))

  • Choi, Byoung-Dong;Jun, Yang;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 1984
  • The removal and readsorption effects of pine and oak bark grown in Korea on water pollution caused by heavy metal ions have been investigated. Bark saturated with heavy metal ions is refleshed with 0.1 N ammonium acetate and then its readsorption has been done. The results obtained are as follows: 1. Adsorption effect of pine bark is similiar to that of oak bark, and 20-40 meshed bark gives the best results. 2. 0.1 N amonium acetate of pH 7 shows more elutriative than the others such as pH 3 hydrochloric acid, pH 10 ammonium hydroxide and pH 7 water. 3 Pine bark refleshed with 0.1 N ammonium acetate gets two times as effective in adsorption as raw bark, and shows more effective than oak bark.

  • PDF

Polymeric Acetate-Selective Electrodes Based on meso-(α,α,α,α)-Tetrakis-[(2-arylphenylurea)phenyl]porphyrins: Electormic and pH Effects

  • Lee, Hyo-Kyoung;Song, Ki-ju;Seo, Hyung-Ran;Jeon, Seung-won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1409-1412
    • /
    • 2002
  • Polymeric membrane electrodes for acetate anion based on meso-(${\alpha}$,${\alpha}$,${\alpha}$,${\alpha}$)-5,10,15,20-tetrakis[2-(penta-fluorophenylurea) phenyl]porphyrin I and similar urea-functionalized porphyrins Ⅱ-Ⅳ as neutral ionophores were prepared. The membrane based on porphyrin I exhibits the best potentiometric properties in pH 6.0 rather than pH 7.0: linear stable response over a wide concentration range (6.0 ${\times}$$10^{-5}$-1.0 ${\times}$$10^{-2}$) with a slope of -59.6 mV/decade and a detection limit of log[CH3CO$O^-$] = -5.32. Selectivity coefficients obtained from the matched potential method (MPM) in pH 6.0 indicate that interferences of hydrophobic anions are very small for the membranes of porphyrins I and II having the strong withdrawing group. The electronic effect of urea-functionalized porphyrins and pH effect of buffer solutions are discussed on the potentiometric response.