Browse > Article

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge  

Bae, Jin-Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Rhee, Sung-Keun (Oak Ridge National Laboratory)
Jang, Am (Kwangju Institute of Science & Technology)
Kim, In-S. (Kwangju Institute of Science & Technology)
Lee, Sung-Taik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.12, no.5, 2002 , pp. 849-853 More about this Journal
Abstract
Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.
Keywords
Bacterial resistance; granules; metal ions; nitrate reduction; sulfate reduction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Beun, 1. J., K. Dircks, M. C. M. van Loosdrecht, andJ. J. Heijnen. 2002. Poly-f-hydroxybutyrate metabolism indynamically fed mixed microbial cultures. Water Res. 36:1167-1180.
2 Gujer, W. and A. J. B. Zehnder. 1983. Conversion processesin anaerobic digestion. Water Sci. Technol. 15: 127-167.
3 Harada, H., S. Uemura, and K. Momonoi. 1994. Interactionbetween sulfate-reducing and methane-producing bacteria inUASB reactors fed with low strength wastes containingdifferent levels of sulfate. WaterRes. 28: 355-367.
4 Isa, Z., S. Grusenmeyer, and W. Verstraete. 1986. Sulfatereduction relative to methane production in high-rateanaerobic digestion: Technical aspects. Appl. Environ.Microbiol. 51: 572-579.
5 Kim, H. Y, T. S. Kim, and B. H. Kim. 1991. Isolation andcharacterization of a dibenzothiophene degrading sulfatereducingsoil bacterium. J Microbiol. Biotechnol. 1: 1-5.
6 Smith,P.H. and R. A. Mall. 1966.Kineticsofacetate metabolismduring sludge digestion. Appl. Microbiol. 14: 368-371.
7 Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. Themethanogenic bacteria. In Balows A., H. G. Triiper, M.Dworkin, W.Harder, andK. H. Schleifer (eds.) TheProkaryotes,Springer, Berlin Heidelberg New York, 2: 719-767.
8 Jeris, 1. S. and P. L. McCarty. 1965. The biochemistry ofmethane fermentation using C14 tracers. J Water Pollut .Control Fed. 37: 178-192.
9 Visser,A., I. Beeksma, EVan der Zee, A. l M. Stams, andG. Lettinga. 1993a. Anaerobic degradation of volatile fattyacids at different sulphate concentrations. Appl. Microbiol.Biotecbnol. 40: 549-556.
10 Oude Elferink, S. 1. W. H., A. Visser, L. W. Hulshoff Pol,and A. 1. M. Stams. 1994. Sulfate reduction in methanogenicbioreactors, FEMS Microbiol. Rev. 15: 119-136.
11 Uberoi, V. and S. K. Bhattacharya. 1997. Effects ofchlorophenols and nitrophenols on the kinetics ofpropionatedegradation in sulfate reducing anaerobic systems. Environ.Sci. Techno!. 31: 1607-1614.
12 Lim, J. G. and D. H. Park. 2001. Degradation of polyrinylalcohol by Brewbacillus laterosporus: Metabolic Pathway ofPolyrinyl alcohol to acetate. J Microbiol. Biotechnol. 11:928-933.
13 Visser, A., P. A. Alphenaar, Y Gao, G. Van Rossem,and G. Lettinga. 1993b. Granulation and immobilisation ofmethanogenic and sulfate-reducing bacteria in high-rateanaerobic reactors. Appl. Microbiol. Biotechnol. 40: 575581.
14 McCartney, D. M. and 1. A. Oleszkiewicz. 1991. Sulfideinhibition of anaerobic degradation of lactate and acetate.WaterRes. 25: 203-209.
15 Bae, r.-w and S.-T. Lee. 1999. Layered structure ofUASBgranules gives microbial population resistance to toxicchemicals. Biotech. Lett. 21: 159-162.
16 Omil, E, S. 1. W. H. Oude Elferink, P. Lens, L. W. HulshoffPol, and G. Lettinga. 1997. Effect of the inoculation withDesulforhabdus amnigenus and pH or O2 shocks on thecompetition between sulphate reducing and methanogenicbacteria in an acetate fed UASB reactor. Biores. Technol. 60:113-122.
17 Park, E.-I., 1.-K. Seo, 1.-K. Kim, K.-H. Suh, and S.-K. Kim.2000. Denitrification characteristics and microorganismscomposition ofacclimated denitrifier consortium. J Microbiol.Biotechnol.l0: 410-414.
18 Fang, H. H. P. 1997. Inhibition of bioactivity of UASBbiogranuJes by electroplating metals. Pure Appl. Chern. 69:2425-2429.
19 Friedmann, E. 1. and A. P. Kibler. 1980. Nitrogen economyof endolithic microbial communities in hot and cold deserts.Microb. Ecol. 6: 95-108.
20 Bhatti, Z. 1., K. Furukawa, and M. Fujita. 1997. Microbialdiversity in UASB reactors. Pure Appl. Chern. 69: 24312438.
21 Jetten, M. S. M., A. 1. M. Stams, and A. J. B. Zehnder. 1992.Methanogenesis from acetate: A comparison of the acetatemetabolism in Methanothrix soehngenii and Methanosarcinasp.FEMSMicrobiol. Rev. 88: 181-198.
22 Alphenaar, P. A., A. Visser, and G. Lettinga. 1993. Theeffect of liquid upward velocity and hydraulic retentiontime on granulation in UASB reactors treating wastewater witha high sulphate content. Bioresource Technol. 43: 249-258
23 Bae, r.w., S.-K. Rhee, S.-H. Hyun, 1. S. Kim, and S.-T. Lee.2000. Layered structure of granules in upflow anaerobicsludge blanket reactor gives microbial populations resistanceto metal ions. Biotech. Lett. 22: 1935-1940.