Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Rhee, Sung-Keun (Oak Ridge National Laboratory) ;
  • Jang, Am (Kwangju Institute of Science & Technology) ;
  • Kim, In-S. (Kwangju Institute of Science & Technology) ;
  • Lee, Sung-Taik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2002.10.01

Abstract

Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Keywords

References

  1. Alphenaar, P. A., A. Visser, and G. Lettinga. 1993. Theeffect of liquid upward velocity and hydraulic retentiontime on granulation in UASB reactors treating wastewater witha high sulphate content. Bioresource Technol. 43: 249-258
  2. Bae, r.-w and S.-T. Lee. 1999. Layered structure ofUASBgranules gives microbial population resistance to toxicchemicals. Biotech. Lett. 21: 159-162.
  3. Bae, r.w., S.-K. Rhee, S.-H. Hyun, 1. S. Kim, and S.-T. Lee.2000. Layered structure of granules in upflow anaerobicsludge blanket reactor gives microbial populations resistanceto metal ions. Biotech. Lett. 22: 1935-1940.
  4. Beun, 1. J., K. Dircks, M. C. M. van Loosdrecht, andJ. J. Heijnen. 2002. Poly-f-hydroxybutyrate metabolism indynamically fed mixed microbial cultures. Water Res. 36:1167-1180.
  5. Bhatti, Z. 1., K. Furukawa, and M. Fujita. 1997. Microbialdiversity in UASB reactors. Pure Appl. Chern. 69: 24312438.
  6. Fang, H. H. P. 1997. Inhibition of bioactivity of UASBbiogranuJes by electroplating metals. Pure Appl. Chern. 69:2425-2429.
  7. Friedmann, E. 1. and A. P. Kibler. 1980. Nitrogen economyof endolithic microbial communities in hot and cold deserts.Microb. Ecol. 6: 95-108.
  8. Gujer, W. and A. J. B. Zehnder. 1983. Conversion processesin anaerobic digestion. Water Sci. Technol. 15: 127-167.
  9. Harada, H., S. Uemura, and K. Momonoi. 1994. Interactionbetween sulfate-reducing and methane-producing bacteria inUASB reactors fed with low strength wastes containingdifferent levels of sulfate. WaterRes. 28: 355-367.
  10. Isa, Z., S. Grusenmeyer, and W. Verstraete. 1986. Sulfatereduction relative to methane production in high-rateanaerobic digestion: Technical aspects. Appl. Environ.Microbiol. 51: 572-579.
  11. Jeris, 1. S. and P. L. McCarty. 1965. The biochemistry ofmethane fermentation using C14 tracers. J Water Pollut .Control Fed. 37: 178-192.
  12. Jetten, M. S. M., A. 1. M. Stams, and A. J. B. Zehnder. 1992.Methanogenesis from acetate: A comparison of the acetatemetabolism in Methanothrix soehngenii and Methanosarcinasp.FEMSMicrobiol. Rev. 88: 181-198.
  13. Kim, H. Y, T. S. Kim, and B. H. Kim. 1991. Isolation andcharacterization of a dibenzothiophene degrading sulfatereducingsoil bacterium. J Microbiol. Biotechnol. 1: 1-5.
  14. Lim, J. G. and D. H. Park. 2001. Degradation of polyrinylalcohol by Brewbacillus laterosporus: Metabolic Pathway ofPolyrinyl alcohol to acetate. J Microbiol. Biotechnol. 11:928-933.
  15. McCartney, D. M. and 1. A. Oleszkiewicz. 1991. Sulfideinhibition of anaerobic degradation of lactate and acetate.WaterRes. 25: 203-209.
  16. Omil, E, S. 1. W. H. Oude Elferink, P. Lens, L. W. HulshoffPol, and G. Lettinga. 1997. Effect of the inoculation withDesulforhabdus amnigenus and pH or O2 shocks on thecompetition between sulphate reducing and methanogenicbacteria in an acetate fed UASB reactor. Biores. Technol. 60:113-122.
  17. Oude Elferink, S. 1. W. H., A. Visser, L. W. Hulshoff Pol,and A. 1. M. Stams. 1994. Sulfate reduction in methanogenicbioreactors, FEMS Microbiol. Rev. 15: 119-136.
  18. Park, E.-I., 1.-K. Seo, 1.-K. Kim, K.-H. Suh, and S.-K. Kim.2000. Denitrification characteristics and microorganismscomposition ofacclimated denitrifier consortium. J Microbiol.Biotechnol.l0: 410-414.
  19. Smith,P.H. and R. A. Mall. 1966.Kineticsofacetate metabolismduring sludge digestion. Appl. Microbiol. 14: 368-371.
  20. Uberoi, V. and S. K. Bhattacharya. 1997. Effects ofchlorophenols and nitrophenols on the kinetics ofpropionatedegradation in sulfate reducing anaerobic systems. Environ.Sci. Techno!. 31: 1607-1614.
  21. Visser,A., I. Beeksma, EVan der Zee, A. l M. Stams, andG. Lettinga. 1993a. Anaerobic degradation of volatile fattyacids at different sulphate concentrations. Appl. Microbiol.Biotecbnol. 40: 549-556.
  22. Visser, A., P. A. Alphenaar, Y Gao, G. Van Rossem,and G. Lettinga. 1993b. Granulation and immobilisation ofmethanogenic and sulfate-reducing bacteria in high-rateanaerobic reactors. Appl. Microbiol. Biotechnol. 40: 575581.
  23. Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. Themethanogenic bacteria. In Balows A., H. G. Triiper, M.Dworkin, W.Harder, andK. H. Schleifer (eds.) TheProkaryotes,Springer, Berlin Heidelberg New York, 2: 719-767.