• Title/Summary/Keyword: Accuracy management

Search Result 2,704, Processing Time 0.028 seconds

Accuracy improvement of a collaborative filtering recommender system using attribute of age (목표고객의 연령속성을 이용한 협력적 필터링 추천 시스템의 정확도 향상)

  • Lee, Seog-Hwan;Park, Seung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In this paper, the author devised new decision recommendation ordering method of items attributed by age to improve accuracy of recommender system. In conventional recommendation system, recommendation order is decided by high order of preference prediction. However, in this paper, recommendation accuracy is improved by decision recommendation order method that reflect age attribute of target customer and neighborhood in preference prediction. By applying decision recommendation order method to recommender system, recommendation accuracy is improved more than conventional ordering method of recommendation.

Using Standard Deviation with Analogy-Based Estimation for Improved Software Effort Prediction

  • Mohammad Ayub Latif;Muhammad Khalid Khan;Umema Hani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1356-1376
    • /
    • 2023
  • Software effort estimation is one of the most difficult tasks in software development whereas predictability is also of equal importance for strategic management. Accurate prediction of the actual cost that will be incurred in software development can be very beneficial for the strategic management. This study discusses the latest trends in software estimation focusing on analogy-based techniques to show how they have improved the accuracy for software effort estimation. It applies the standard deviation technique to the expected value of analogy-based estimates to improve accuracy. In more than 60 percent cases the applied technique of this study helped in improving the accuracy of software estimation by reducing the Magnitude of Relative Error (MRE). The technique is simple and it calculates the expected value of cost or time and then uses different confidence levels which help in making more accurate commitments to the customers.

Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System (기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발)

  • Kim, Sung Hoon;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

DISTANCE MEASUREMENT IN THE AEC/FM INDUSTRY: AN OVERVIEW OF TECHNOLOGIES

  • Jasmine Hines;Abbas Rashidi;Ioannis Brilakis
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.616-623
    • /
    • 2013
  • One of the oldest, most common engineering problems is measuring the dimensions of different objects and the distances between locations. In AEC/FM, related uses vary from large-scale applications such as measuring distances between cities to small-scale applications such as measuring the depth of a crack or the width of a welded joint. Within the last few years, advances in applying new technologies have prompted the development of new measuring devices such as ultrasound and laser-based measurers. Because of wide varieties in type, associated costs, and levels of accuracy, the selection of an optimal measuring technology is challenging for construction engineers and facility managers. To tackle this issue, we present an overview of various measuring technologies adopted by experts in the area of AEC/FM. As the next step, to evaluate the performance of these technologies, we select one indoor and one outdoor case and measure several dimensions using six categories of technologies: tapes, total stations, laser measurers, ultrasound devices, laser scanners, and image-based technologies. Then we evaluate the results according to various metrics such as accuracy, ease of use, operation time, associated costs, compare these results, and recommend optimal technologies for specific applications. The results also revealed that in most applications, computer vision-based technologies outperform traditional devices in terms of ease of use, associated costs, and accuracy.

  • PDF

A Study on Improving the Accuracy of Medical Images Classification Using Data Augmentation

  • Cheon-Ho Park;Min-Guan Kim;Seung-Zoon Lee;Jeongil Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.167-174
    • /
    • 2023
  • This paper attempted to improve the accuracy of the colorectal cancer diagnosis model using image data augmentation in convolutional neural network. Image data augmentation was performed by flipping, rotation, translation, shearing and zooming with basic image manipulation method. This study split 4000 training data and 1000 test data for 5000 image data held, the model is learned by adding 4000 and 8000 images by image data augmentation technique to 4000 training data. The evaluation results showed that the clasification accuracy for 4000, 8000, and 12,000 training data were 85.1%, 87.0%, and 90.2%, respectively, and the improvement effect depending on the increase of image data was confirmed.

Lode Location Management Using RSSI Regression Analysis in Wireless Sensor Network (RSSI의 회귀 분석을 이용한 무선센서노드의 위치관리)

  • Yang, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1935-1940
    • /
    • 2009
  • One of the key technical challenges of wireless sensor network (WSN) is location management of sensor nodes. Typical node location management methods use GPS, ultrasonic sensors or RSSI. In this paper we propose a new location management method which adopts regression analysis of RSSI measurement to improve the accuracy of sensor node position estimation. We also evaluated the performance of proposed method by comparing the experimental results with existing scheme. According to the results, our proposed method, LM-RAR, shows better accuracy than existing location management scheme using RSSI and Friis' equation.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

Development of Regional Flood Debris Estimation Model Utilizing Data of Disaster Annual Report: Case Study on Ulsan City (재해연보 자료를 이용한 지역 단위 수해폐기물 발생량 예측 모형 개발: 울산광역시 사례 연구)

  • Park, Man Ho;Kim, Honam;Ju, Munsol;Kim, Hee Jong;Kim, Jae Young
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.777-784
    • /
    • 2018
  • Since climate change increases the risk of extreme rainfall events, concerns on flood management have also increased. In order to rapidly recover from flood damages and prevent secondary damages, fast collection and treatment of flood debris are necessary. Therefore, a quick and precise estimation of flood debris generation is a crucial procedure in disaster management. Despite the importance of debris estimation, methodologies have not been well established. Given the intrinsic heterogeneity of flood debris from local conditions, a regional-scale model can increase the accuracy of the estimation. The objectives of this study are 1) to identify significant damage variables to predict the flood debris generation, 2) to ascertain the difference in the coefficients, and 3) to evaluate the accuracy of the debris estimation model. The scope of this work is flood events in Ulsan city region during 2008-2016. According to the correlation test and multicollinearity test, the number of damaged buildings, area of damaged cropland, and length of damaged roads were derived as significant parameters. Key parameters seems to be strongly dependent on regional conditions and not only selected parameters but also coefficients in this study were different from those in previous studies. The debris estimation in this study has better accuracy than previous models in nationwide scale. It can be said that the development of a regional-scale flood debris estimation model will enhance the accuracy of the prediction.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

A Product Recommendation Scheme using Binary User-Item Matrix (고객-제품 구매여부 데이터를 이용한 제품 추천 방안)

  • 이종석;권준범;전치혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.191-194
    • /
    • 2003
  • As internet commerce grows, many company has begun to use a CF (Collaborative Filtering) as a Recommender System. To achieve an accuracy of CF, we need to obtain sufficient account of voting scores from customers. Moreover, those scores may not be consistent. To overcome this problem, we propose a new recommendation scheme using binary user-item matrix, which represents whether a user purchases a product instead of using the voting scores. Through the experiment regarding this new scheme, a better accuracy is demonstrated.

  • PDF