
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May. 2023 1356
Copyright ⓒ 2023 KSII

http://doi.org/10.3837/tiis.2023.05.003 ISSN : 1976-7277

 Using Standard Deviation with Analogy-
Based Estimation for Improved Software

Effort Prediction

Mohammad Ayub Latif1*, Muhammad Khalid Khan1 and Umema Hani1
1 College of Computing and Information Sciences,
Karachi Institute of Economics and Technology

Karachi, Pakistan
[e-mail: malatif@kiet.edu.pk, khalid.khan@kiet.edu.pk, dr.umema@kiet.edu.pk]

Corresponding author: Mohammad Ayub Latif

Received April 6, 2022; revised November 20, 2022; accepted April 28, 2023;
published May 31, 2023

Abstract

Software effort estimation is one of the most difficult tasks in software development whereas
predictability is also of equal importance for strategic management. Accurate prediction of the
actual cost that will be incurred in software development can be very beneficial for the strategic
management. This study discusses the latest trends in software estimation focusing on
analogy-based techniques to show how they have improved the accuracy for software effort
estimation. It applies the standard deviation technique to the expected value of analogy-based
estimates to improve accuracy. In more than 60 percent cases the applied technique of this
study helped in improving the accuracy of software estimation by reducing the Magnitude of
Relative Error (MRE). The technique is simple and it calculates the expected value of cost or
time and then uses different confidence levels which help in making more accurate
commitments to the customers.

Keywords: Effort Estimation, Analogy-based estimation, improving accuracy, standard
deviation in effort estimation, commitments to customers.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1357

1. Introduction

When planning about the effort or cost estimation of a software four important
considerations before selecting an estimation model are the project size, software development
style, the development stage and the required accuracy. The size can be classified as small,
medium and large, different estimation models have their defined values for the size; the
development style can be sequential, iterative or coupled. The development stage refers to the
time in the lifecycle when an estimator is estimating the project; it can be the start of the project
which is early requirements, to middle or late. The fourth consideration is the accuracy which
an estimator is targeting;

After getting the outputs from an estimation model, data is needed for calibrating it into
meaningful estimates. All models require data and, in his book, Steve McConnell has
identified three types of data. Industrial data is the data of other organizations, historical data
is the data of the same organization of previous projects and project data is the data of the
project which is estimated. One requirement for the use of project data is that, the project
which needs to be estimated should follow the iterative development life cycle, so the data of
the first iteration can be used for the calculations of later iterations [1].

Researchers have also shown that least accurate results are from calibration done with
industrial data, the historical data gives better results than the industrial data and the most
accurate results with lowest variance is by the use of the project data [2]. Project managers
need to check that completion time for a task is given intelligently so that Parkinson’s Law
does not apply in their on-going projects. Parkinson’s Law states that work generally takes up
all the time which is allocated for a task. So, if you give your developers, four days to finish a
one-day task, it is expected that the task will now acquire four days [3][4]. Mostly in the
modern era we have dynamic estimation models than compared to the flat models in which
the number of team members can vary with respect to the different phases of the SDLC. With
a dynamic estimation model the team size can be of 2 people in the requirement phase and 10
people in the development phase [1][5][2].

Broadly software estimation models are divided into two different categories algorithmic
and non-algorithm model. The popular models in algorithm models are Lines of Code (LOC),
Function points (FP) and Constructive Cost model (COCOMO). The non-algorithmic models
comprise of expert judgment, analogy-based techniques, proxy techniques and pricing to win.

Estimation for defects through a defect prediction mechanisms for software with
identification of challenges for defect prediction [6] shows the use of estimation which is other
than cost, time and effort. The control of software activities and predicting about when a
development will end is a difficult task, in order to adapt changes, some researchers have
proposed a generalized software reliability model that is based on stochastic process to
stimulate the software development that includes uncertainty [7]. Another study has explored
the possibilities of application of Artificial Neural Network (ANN) as a tool for predicting
software development effort. It proposed an ANN model for predicting software development
effort [8]. In another work a systematic review of software effort estimation models built using
ML techniques. All the empirical studied published in the time period of January 1991 to
December 2017 were considered in the review. The work concludes that support vector
machines (SVM) and regression techniques in combination are characterized by better
predictions when compared with other Machine learning and non-Machine learning techniques
[9]. It is important to note that metrics not only pertain to software costing and estimation;
product metrics usage can lead towards better software quality. A study has proposed new
technique for the visualization of metrics which will ultimately help in improving the software

1358 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

quality [10].
Generally, most of the project managers know that there is no best effort estimation model

or method that can be applied to a particular case of estimation, if the client is forcing for a
low-cost solution this can also lead to an overrun. Other important known concept is that
estimations are often misleading [11]. It is well understood that Software Process
Improvement can occur if we move towards better estimation for software. In recent times the
concept of Global Software Engineering (GSE) has also emerged and many organizations are
involved in Global Software Development (GSD). A systematic literature review is performed
on success factors and barriers to software process improvement for Global Software
Development (GSD) [12]. The concept of GSD has also given rise to offshore software
development where low-cost countries are used for developing software for another country.
A study has identified the challenges for managing offshore contracts from the vendors’
perspectives [13].

The core idea of analogy-based effort estimation (ABEE) is that you can create the estimate
of a new project by comparing it with the estimates of an old project which has already been
accomplished by your organization. ABEE or estimation by analogy comprises of 4 major
steps for calculating the effort of the software as shown in Fig. 1:

Fig. 1. Steps for Estimation by analogy.

The pioneers of introducing analogy based estimates were Shepperd and Schofield and they
proposed this as a non-algorithm model for software effort estimation [14]. There are a few
constraints which are mandatory for the accuracy of estimation by analogy; the first
consideration is that the size of the previous and the current project should not vary on a larger
scale. The development technologies for the both the projects should be same, this means if a
project is to be developed in C# language, we cannot use a project developed in C Language
as the baseline project. The difference between the team sizes of the new and the old project
should also be minimal. Another important constraint is that the type of the projects should be
same, a system software cannot be compared to form an estimate of an information system [1].

Following are the major contributions of the present study:

1. Detailed review of analogy-based effort estimation techniques in recent years and

how different improvements have been suggested in them to achieve better
accuracy.

2. A simplified real case study that shows the effort estimation of a software in a
simplified way.

1
Getting data of

similar past
project.

2
Comparing of size

of new project with
the old project

3
Building up the
estimate of the

new project's size.

4
Building up the
estimate of the

new project.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1359

3. Very simple technique of standard deviation applied to the initial calculated effort
in order to achieve better accuracy.

4. Validation of achieving improvement through the proposed approach over an
available industrial dataset from different software houses.

The rest of the paper is structured as follows, in section 2 we provide the related work which

focuses on the latest research trends related to analogy-based effort estimation. In section 3 we
present a simple case of estimation by analogy and show the calculation of effort in terms of
persons-month and we also recommend how the estimation by analogy can be improved by
using standard deviation. We also apply our standard deviation methodology on an available
dataset for agile software. In section 4 we provide our results and discussion and in section 5
we conclude our paper with directions for future research.

2. Related Work

In this section we look into all the work that has been carried out related to analogy-based

estimation, we investigate the variants of analogy-based estimation and how improvements to
the traditional methods had been shown by different researchers.

A systematic mapping of ASSE papers from 1990 to 2012 has been performed. The research
objectives were to identify the studies with respect to the estimation accuracy, comparison of
accuracy, context of the estimation, ASSE tools and impact of techniques which were used in
combination to ASSE method [15].

To find improvements in ASSE technique a domain of review comprised of 24 papers which
were selected through a formal tough process. The results show that improvement of ABE can
be performed through adjustment, grey theory, attribute weighting and attribute selection
techniques [16].

Analogy based estimation (ABE) is criticized because of low prediction accuracy, the large
memory requirement and the expensive computation cost. To provide a solution for these
problems a project selection technique for ABE (PSABE) is proposed which reduces the whole
project base into a small subset that consist only of representative projects. Finally, PSABE is
combined with the feature weighting to form FWPSABE for a further improvement of ABE.
To validate the methods four datasets are used (two real-world sets and two artificial sets) and
compared with conventional ABE, feature weighted ABE (FWABE), and machine learning
methods. The results conclude that project selection technique could significantly improve
analogy-based models for software cost estimation [17].

A work has investigated non-uniform weighting through kernel density estimation. After an
extensive experimentation of 19 datasets, 3 evaluation criteria, 5 kernels, 5 bandwidth values
and a total of 2090 ABE variants, it concludes that non-uniform weighting through kernel
methods cannot outperform uniform weighting ABE [18].

A novel technique is proposed that relies on reasoning by analogy, fuzzy logic and linguistic
quantifiers for estimating effort, provided that the software project is represented either by
categorical or numerical data. Use of fuzzy logic-based cost estimation models is more suitable
if unclear or inaccurate information are considered [19].

In a work to rank the adaptation techniques of analogy-based estimation a comparison of
eight different ranking techniques for analogy-based estimation using larger datasets
concludes that linear adaptation techniques outperform all other techniques [20].

To achieve accuracy and as to the fact that no estimation model outperforms other models
in all situations, the importance of estimating from ensembles of various single technique. A

1360 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

work proposes similar ensembles based on single classical analogy and single fuzzy analogy.
Experiments were conducted across seven datasets, that concludes that fuzzy analogy
ensembles achieved better performance than classical analogy ensembles [21].

Ibtissam Abnan et. al. used missing data techniques with fuzzy analogy. They found that
Pred (0.25) and Standardized Accuracy (SA) measure different aspects of technique
performance. They suggest that SA should not be used alone to conclude about a technique’s
accuracy and other metrics should also be involved with it and they recommend the
involvement of Pred (0.25) as the other metric [22].

A Squares Support Vector Machine (LS-SVM) method that is nonlinear adjustment method
is used for calibration. The work tested it on some datasets and compared it results with
artificial neural network (ANN) and extreme learning machines (ELM) [23].

To overcome the errors related to analogy-based estimation, a work shows that S-
membership function can be used to overcome the problems of an estimator to select the right
set of projects to reach to a comparison [24].

Analogy-based estimation is built upon the principle of case-based reasoning (CBR) based
on the k similar projects completed in the past. Therefore, the determination of the k value is
crucial to the prediction performance. The researchers have worked and proposed a technique
that uses hierarchical clustering in order to produce a range for k through various cluster
quality criteria [25].

A research has compared six similarity measures for analogy-based estimation, it concludes
that Euclidean and Manhattan similarity measures gives more accurate result in estimation for
the datasets of software projects [26].

A work finds out, that instead of keeping all the historical data for COCOMO, using recently
completed projects data of shorter duration will help in more accurate results in estimation.
Similarly, k-nearest neighbors will also produce accurate results for Estimation by analogy
[27].

Achieving accuracy in projects where the size of the current project is different to the
completed past projects relies on effort adaptation. The work performs systematic comparison
of effort estimators that were optimized by Bayesian optimization techniques. The experiment
was carried out on 13 standard datasets. It concludes that a model which integrates gradient
boosting machine algorithm has out-performed all other techniques [28].

A new analogy-based approach is proposed named as 2FA-kprototypes that can be utilized
when both kind of attributes are involved. It used some datasets to compare the accuracy of
2FA-kprototypes with the traditional analogy-based estimation and 2FA-kmodes (this
technique was developed in their earlier research). The verification results showed that 2FA-
kprototypes and 2FA-kmodes both techniques performed better than traditional analogy-based
effort estimation [29].

Where software projects are defined by a combination of continuous and categorical
features; in a work an improvement is made to the 2FA-kprototypes techniques by using the
2FA-cmeans. This new techniques uses a fuzzy c-mean clustering technique that cluster
objects which have mixed attributes. This 2FA-cmeans was tested on 6 different datasets and
it outperforms their previous 2FA-kprototype technique and also all other classical analogy
techniques [30].

A new solution function has been proposed to improve the estimation accuracy of Analogy
based estimates. The function is called SABE (Stacking Regularization in analogy-based
software effort estimation. The crucial point about SABE is stacking which is a machine
learning technique. Stacking works on multiple models and combines the capabilities of all in
order to better predict the estimate. Four different datasets are used for validation and results

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1361

suggested that SABE’s performance is better than the former studies [31].
A study has investigated the effect of the LEM algorithm on optimization of features

weighting and have proposed a new method. They checked the effectiveness of the algorithm
on two datasets, Desharnais and Maxwell. They used evaluation metrics like MMRE, PRED
(0.25), and MdMRE to evaluate and compare the proposed method against previous algorithms.
Their technique show considerable improvement in estimating the cost of the software [32].

As analogy-based estimation requires prediction of the best number of analogies and
adjustment technique selection for achieving the best possible estimates, a work has proposed
a new adjusted ABE model for optimization and approximation of complex relationships
between different features. It shows that the use of this model has improved the performance
of ABE [33].

A proposed estimation model known as the Fuzzy Analogy based Software Effort
Estimation model (FASEE) makes successful use of fuzzy logic with approximate reasoning
theory to handle imprecision and uncertainty. In a recent work enhancement has been made to
the FASEE model and problems related to the low quality of data and uncertainty in the
reasoning process are solved to some extent. This new model is compared in thirteen software
project datasets and it is concluded that the model performs better in terms of accuracy. The
model is named as Consistent Fuzzy Analogy-based Software Effort Estimation (CFASEE)
[34].

The shortcomings of Analogy-Based estimation tools are identified and a new enhanced
model for analogy-based estimation is proposed. A system prototype is also prepared which is
called EffortEst and it is based on the enhanced model. The authors have shown that EffortEst
provides the nearest best estimation and the user intervention is also minimal [35].

A new framework is proposed that uses case-based reasoning (CBR) model along with
considering the comprehensive set of requirements that includes the functional, non-functional
requirements both along with the domain properties. The framework is tested on a set of thirty-
six students projects and shows that the difference in terms of calculated and actual effort was
in the range of 10% [36].

International Software Benchmarking Standards Group (ISBSG) dataset is used in a study
to confirm that the usefulness of applying linguistic values rather than the numerical values in
analogy-based estimation can bring much better results in terms of accuracy[37].

The Table 1 below shows the references of the work carried out for bringing an
improvement in the analogy-based estimates. The Table 1 headers are restricted to paper
reference, pros and cons, the accuracy metric used and the details of the accuracy in the last
column. Only those studies are entered in the Table 1 from the reported studies which tested
the analogy-estimation improvement technique and validated it by using some accuracy
metrics.

Table 1. Comparative analysis of existing approaches for improvement in ABEE

Paper
ID

Proposed
Technique
Name

Pros Cons Accuracy
Metric

Accuracy

[17] Feature
Weighing
Project
Selection
Technique
for
Analogy-

Promising result
that it can
significantly
improve the
analogy-based
estimation even
the ones which

Comparatively
smaller memory
requirement because
of only selected
projects.

Only tested for

Mean
Magnitude
Relative Error
(MMRE)

Pred (0.25)

For both the
real and the
artificial
datasets the
proposed
technique
based on

1362 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

based
estimation.

already applied
feature
weighing.

Lesser
computation cost
than compared to
traditional
analogy-based
estimation.

projects developed
using the waterfall
methodology.

Median
Magnitude of
Relative Error
(MdMRE)

feature
weights
project
selection
outperformed
all other
techniques in
most cases
which was
validated by
using accuracy
metrics.

For the real
dataset their
proposed
techniques
achieved the
best testing
performance
(0.32 for
MMRE, 0.44
for PRED
(0.25) and
0.29 for
MdMRE)

[37]

Fuzzy
Analogy
with
Linguistic
values.

Simple
explanation of
classical analogy
and fuzzy
analogy is
provided in the
work.

Promising
results for Fuzzy
analogy than
compared to
classical
analogy.

Diverse datasets
from different
applications
domains are not
accommodated.

Datasets with high
quality ratings were
included in the
experiment and
datasets classified of
lesser quality were
ignored.

The technique was
only tested for new
development, this
leaves a question
mark for using the
technique for the
enhancements of
existing projects or
redevelopment.

Pred (20) For All-in
method for
evaluation the
values of Pred
(20) are 50 and
76.35 using
Classical and
Fuzzy
Analogy
respectively;
For Jackknife
method, the
values of Pred
(20) are 16.89
and 24.32
using
Classical and
Fuzzy
Analogy
respectively.
In both the
cases there is
improvement
through the
Fuzzy
Analogy
technique.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1363

[19] Cost
Estimation
based on
soft
computing
techniques.

Block diagram is
created for the
techniques
which makes it
easy to
understand the
proposed
technique.

MMRE calculation
was made only for
one dataset,
although the work
utilized three
datasets in the
experiment.

The datasets are old
and surely does not
accommodate the
software which are
developed using the
newer
methodologies of
software
development.

Mean
Absolute
Relative Error
(MARE)

Mean
Magnitude of
Relative Error
(MdMRE)

The MMRE
for the
COCOMO
NASA Dataset
reduced to 2.6
percent with
the proposed
method than
compared to
two other
methods
where the
calculated
MMRE was
32.65 percent
and 56.46
percent
respectively.

[21] Fuzzy
Analogy
Ensembles.

The work
provides an
investigation of
fuzzy and
classical analogy
ensemble
technique used
for effort
estimation. The
study answers
four research
questions that
relates to
estimation
through
ensembles for
analogy.

The work only
incorporated
numerical attributes
and categorical data
was missed out.

Standardized
Accuracy
(SA) based on
Mean
Absolute
Error (MAE)

Fuzzy
Analogy
ensembles
often
outperform
Classical
Analogy
ensembles in
terms of SA
even though
whatever
combiner rule
and number of
solo
techniques are
used to
construct the
ensembles.

[25] Hierarchical
clustering
for
Analogy-
based effort
estimation.

The research
work pointed
towards the
problem domain
for identifying
the clustering
technique on the
basis of datasets,
i.e. which
clustering
technique will be
feasible for
which kind of a
dataset.

For Random k only
one other technique
(Baker’s Technique)
was evaluated with
the proposed
technique although
many other
techniques exist for
keeping a random
value of k.

Mean
Magnitude
Relative Error
(MMRE)

They tested
their proposed
technique of
hierarchical
clustering on
six datasets
and compared
it with other
variants of
dynamic k size
and fixed k
size. Out of
the 6 datasets
the MMRE
was improved
in three cases
using the

1364 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

proposed
approach. For
the Desharnais
dataset they
reported the
lowest MMRE
at 0.492 than
compared to
the other four
techniques.

[28] Effort
adaptation
using
gradient
boosting
machine
algorithm

Highly accurate
and intuitive
proposed model
that does not
require any
expert
interactions.

10 effort
estimation
techniques are
compared in the
study.

Not tested for
search-based effort
estimation
techniques.

The study
used the
losses metric
based on six
different
accuracy
metrics used
for effort
estimation.

The loses were
counted at
minimum for
the proposed
technique and
all the 13
datasets which
incorporated
the proposed
technique had
losses at the
lowest group
i.e. is from 0%
to 5%. None
other
compared
technique
could
categorize all
the datasets in
the lowest
losses group.

[32] Learning
Objective
Model with
Analogy-
Based
Estimation
(LEMABE)
.

The study has
combined the
Learning
Evolution model
with analogy-
based
estimation, a
flowchart
algorithm is also
provided for the
technique.

N/A Mean
Magnitude
Relative Error
(MMRE)

Pred (0.25)

Median
Magnitude of
Relative Error
(MdMRE)

Of the 3
different
datasets used
for validating
the technique
for the
Deshernais
dataset, it
produced the
best result for
all the three
different
accuracy
metrics than
compared to
all other
techniques.
The results
were MMRE
= 0.21, Pred
(0.25) = 0.60,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1365

and MdMRE
= 0.15. In al
other datasets
also, there was
significant
improvement
by utilizing
the proposed
technique.

[35] EffortEst
(Effort
Estimation)

Critical analysis
of estimation
models is
performed to
identify the short
comings.

User
intervention is
limited with the
proposed
technique and
they have also
developed a
prototype for the
estimation tool.

The EffortEst is
compared with only
three other
estimation tools,
although there are
numerous
estimation tools
available for effort
estimation.

Lack of evidence for
claiming that
ESTOR with which
they compared their
estimation tool is the
best.

Persons-
month

The calculated
effort through
EffortEst in
the study was
closest to the
estimate
calculated
through a tool
which they
claimed as the
best
estimation tool
and the name
of the tool
with which
they compared
EffortEst is
ESTOR.

[36] Multi-
criteria
decision
technique.

Uses
incremental
approach for
software
prediction at an
early stage of
software
development.

The work only
relied on students’
projects for
validation, this
means no real world
or industrial dataset
was used for
calculating the
accuracy.

Pred (0.10) The work has
validated the
proposed
methodology
on 36
students’
projects and
they used the
predictability
metric at 10%.
97% of the
total projects
met the pred
(0.10) criteria.

The section 3 presents a case study based on analogy-based estimate and then also shows

how it can be improved using the standard deviation technique which we have proposed. The
best thing about our approach is we have provided a complete case study step by step. Unlike
in most of the studies the core advantage we have in our dataset is that it is based on the agile
methodology. Secondly our dataset is collected from six different software houses of Pakistan.

1366 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

3. Analogy-Based Estimation Technique

In this section we present a small and a simple case so that the readers can have an idea as
to how the analogy-based estimation works. Let’s suppose an organization has recently created
a project in which they have worked on a biometric system for marking attendance of
employees of a company and created a web application for their HR team including charts for
performance analysis of employee’s office timing and an android application for upper
management to watch the data and keep an eye on employees attendance.

Now a new client needs a similar Attendance system with a little difference. In the new case
some employees of the company work on client sites, while others work in office. So, the
attendance could not be marked using the thumb machine as it is installed at company’s office
and not at the client’s location. Considering this problem, the new solution is an android
application that will provide login for the employees of that company and when those
employees will enter the client’s premises, the location service will be used to mark their
attendance.

The organization has chosen estimation by analogy for this project as this project is almost
similar to previous project. For the initial step the Table 2 shows the previous project’s
modules, their LOCs, number of features of previous and new project. Finally, it also shows
the multiplication factor used for the new project calculated from the details of previous and
new project.

Table 2. LOC of previous similar project and the current project

Modules
(LOCS)

Previous
Project
Detail
LOC

Previous
Project
Detail

Current
Project

Multipl
ication
Factor

Current
Project LOC

Requirement
Analysis

8000 60
features

90
features

1.5 12000

MySQL
Tables

17500 20 tables 25 tables 1.25 21875

Android
Part

6000 6
activities

12
activities

2 12000

Graphs and
Charts

2000 5 charts 10 charts 2 4000

Java Code 30000 80 classes 90
classes

1.125 33750

APIs 4000 6 APIs 9 APIs 1.5 6000
Hardware
Integration

20000 40 classes 48
classes

1.2 24000

SQL Classes 6000 12 classes 12
classes

1 6000

Total 93500 119625

In Table 2, the multiplication factor is calculated by dividing the previous project features
with the new project features. The LOC of the new project is calculated by simply multiplying
the previous project’s LOC with the multiplication factor.

Using the LOCs of the previous and current project the size ratio is calculated and it is
shown that the effort for the current project is estimated at 64 staff-months than compared to
the effort of 50 staff-months of the previous project. Table 3 shows the details.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1367

Table 3. Effort of the new project in staff-months

3.1. Improving the Analogy-Based Estimation

This subsection shows the use of simple standard deviation technique to get better
confidence for the estimate that was calculated in the last section. Standard deviation technique
requires worst case, best case and most likely estimates. To incorporate this from the previous
multiplication factor for analogy estimates, we will have three values, one for the best case,
the other for the most likely and the last for the worst case. From the three values we will
generate the expected value as suggested by Putnam[38]. The Table 4 below shows the best
case, worst case and the most likely values of the previously calculated multiplication factor.
Our new estimation case incorporating the best and the worst cases is given in the Table 4.

Table 4. Best- and Worst-case LOC calculation of the new project
MF: Multiplication Factor

Modules
(LOCS)

Previous
Project
LOC

MF
(Best
Case)

MF
(Most

Likely)

MF
(Worst
Case)

Current
Project
LOC
(Best
Case)

Current
Project
LOC
(Most

Likely)

Current
Project
LOC

(Worst
Case)

Requirement
Analysis

8000 1 1.5 2 8000 12000 16000

MySQL
Tables

17500 0.80 1.25 1.4 14000 21875 24500

Android Part 6000 1.25 2 2.40 7500 12000 14400
Graphs and

Charts
2000 1.5 2 2.75 3000 4000 5500

Java Code 30000 1 1.125 1.75 30000 33750 52500
APIs 4000 1 1.5 1.80 4000 6000 7200

Hardware
Integration

20000 0.8 1.2 1.80 16000 24000 36000

SQL Classes 6000 0.5 1 1.25 3000 6000 7500
Total 93500 85500 119625 147600

In Table 4 we also calculate the best case, worst case and most like size of the software in
terms of LOC.

Using the approach of calculating the effort in terms of staff-months, now when we use the
values of LOC best case, LOC most likely and LOC worst case. Effort for all the three cases
is shown in Table 5.

Table 5. Best and worst and most likely effort in persons-month
Best Case Effort Most Likely Effort Worst Case Effort
46 staff-months 64 staff-months 79 staff-months

Term Value
Current Project LOC 119625
Previous Project LOC 93500

Size Ratio 1.28
Previous Project Effort 50 staff-months
Current Project Effort 64 staff-months

1368 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

A known way in statistics is to assume that the one sixth of a difference between a maxima
and minima is equal to one standard deviation. This way of calculating the standard deviation
assumes that the maxima include 99.86% percent chances of meeting the estimate and the
minima holds 0.135% percent chances[1]. As defined the standard deviation will be the
difference between maxima and minima divided by 6. In our case it will be 79-46/6=33/6=5.5.
And our expected case will be based on the Expected value formula which is shown in
Equation (1).

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 = [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+(4 𝑥𝑥 𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)+𝑊𝑊𝑀𝑀𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵]
6

 (1)

In our case the Expected Value is 63.5 which is almost 64 staff-months. So, in our case our
most likely value is also our expected value. In order to be more confident on our calculated
effort value, we see the percentage confident statistically valid values for 70%, 80% and 90%
percentage confident calculations in the Table 6. The values are also given in the book by
Steve McConnell[1]. The standard deviation was 5.5 as calculated previously.

Table 6. Estimated Effort with different percentage confidence
Percentage
Confident

Calculation Effort Estimation

70% Expected Case + (0.52 x SD) 66.86=67 staff-months
80% Expected Case + (0.84 x SD) 68.62=69 staff-months
90% Expected Case + (1.28 x SD) 71.04=71 staff-months

As shown in the Table 6, committing 71 staff-months as effort for our system will have 90%

confidence that the project will not take more than 71 staff-months, similarly 67 staff-months
and 69 staff-months will have 70% and 80% confidence respectively. By incorporating this
standard deviation in analogy-based estimation, there are more chances of meeting our
commitment that will lead to better level of customer satisfaction.

To strengthen our approach, we have used this mechanism in a dataset for agile based
estimation. As agile based development uses an iterative and incremental approach, expert
judgment is also used for effort estimation in agile based software system.

Agile based estimation generally uses the analogy-based estimation therefore we believe
it’s a good choice to implement this mechanism on an agile based dataset. The authors in their
research work have identified through the systematic literature review and survey that one of
the most frequently estimation technique for agile based development is estimation by analogy,
they have nicely classified the estimation techniques for agile based software development
[39].

The dataset used for using standard deviation approach in order to improve the effort
estimation contains data of 21 previous projects developed using Scrum-based agile software
development. The dataset has been collected from [40] which claims that the data was first
collected from six different software houses of Pakistan. The dataset contains 21 instances and
9 attributes. Each instance represents one project related data which provides information
including Sprint Size, monthly Work Days, Team’s Initial Velocity (Vi), total Time for
completing one sprint, total Cost spend on one sprint, Efforts completed by the team in one
sprint, monthly Team Salary, Dynamic Force Factor (D) and Teams’ Final Velocity (V). In
order to show the use of standard deviation on the dataset we will use the values of actual time
and estimated times as shown in Table 7. The Table 7 only shows that values that we will be
using for our case.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1369

Table 6. Dataset of 21 software developed using agile methodology
No. Actual Time Est. time
1 63 58
2 92 81
3 56 52
4 86 87
5 32 29
6 91 95
7 35 29
8 93 84
9 36 35
10 62 66
11 45 41
12 37 39
13 32 35
14 30 26
15 21 22
16 112 103
17 39 40
18 52 50
19 80 76
20 56 51
21 35 34

In order to incorporate the standard deviation, we have first calculated the best case and
worst case from the estimated time. As we did not have the actual best case and worst-case
figures, we just subtracted 20% from the estimated time for the best case and added 20 percent
to the estimated time for the worst case. We assumed the estimated time as the most likely
value, using these three values we calculated the expected value as discussed in the example
previously. As same percentage was used for generating the best and the worst case, the
expected value is same as the estimated value given in the dataset. But this approach helped
us in calculating the standard deviation with the help of which we were able to generate more
than one estimated time with different level of confidence. In Table 8 we show our standard
deviation part on the dataset and also show the new estimated time with 70, 80 and 90%
confident levels.

1370 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

 Table 8. Standard Deviation and different confidence levels of time
No. Est.

time
Est.
time
(ML)

WC BC EV SD 70% 80% 90% Actu
al

1 58 58 46.4 69.6 58 3.86 60.01 61.2
4

62.9
4

63

2 81 81 64.8 97.2 81 5.4 83.80 85.5
3

87.9
1

92

3 52 52 41.6 62.4 52 3.46 53.80 54.9
1

56.4
3

56

4 87 87 69.6 104.
4

87 5.8 90.01 91.8
7

94.4
2

86

5 29 29 23.2 34.8 29 1.93 30.0 30.6
2

31.4
7

32

6 95 95 76 114 95 6.33 98.29 100.
3

103.
1

91

7 29 29 23.2 34.8 29 1.93 30.0 30.6
2

31.4
7

35

8 84 84 67.2 100.
8

84 5.6 86.91 88.7
0

91.1
6

93

9 35 35 28 42 35 2.33 36.21 36.9
6

37.9
8

36

10 66 66 52.8 79.2 66 4.4 68.28 69.6
9

71.6
3

62

11 41 41 32.8 49.2 41 2.73 42.42 43.2
9

44.4
9

45

12 39 39 31.2 46.8 39 2.6 40.35 41.1
8

42.3
2

37

13 35 35 28 42 35 2.33 36.21 36.9
6

37.9
8

32

14 26 26 20.8 31.2 26 1.73 26.90 27.4
5

28.2
1

30

15 22 22 17.6 26.4 22 1.46 22.76 23.2
3

23.8
7

21

16 103 103 82.4 123.
6

103 6.86 106.5 108.
7

111.
7

112

17 40 40 32 48 40 2.66 41.38 42.2
4

43.4
1

39

18 50 50 40 60 50 3.33 51.73 52.8 54.2
6

52

19 76 76 60.8 91.2 76 5.06 78.63 80.2
5

82.4
8

80

20 51 51 40.8 61.2 51 3.4 52.76 53.8
5

55.3
5

56

21 34 34 27.2 40.8 34 2.26 35.17 35.9
0

36.9
0

35

The first column of the Table 8 is the project number, the second column is of the estimated

time as given in the dataset, the third column is the estimated time which we have assumed as
most likely for our expected value. The fourth and the fifth columns are for the best and the
worst case which are calculated by adding and subtracting 20% from the estimated values

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1371

respectively. The sixth column is the expected time generated through the expected value
formula given in equation 1. The seventh is the standard deviation calculated by dividing the
difference of worst and the best case with 6. Eighth, ninth and tenth columns are the estimated
time of the project incorporating the standard deviation on 70, 80 and 90 percent confidence
levels respectively. The eleventh which is the last column is the actual time that was spent on
the project.

In the next section we calculate the Magnitude of Relative Error for all of our estimated
cases and provide our understanding of the results. The Mean Magnitude of Relative Error
(MMRE) is also calculated.

4. Results and Discussion
This section shows the Magnitude of Relative error (MRE) of 4 cases, first for the previous

estimated time value from the dataset, then the MRE for our estimates with 70, 80 and 90%
confidence levels which are shown in Table 9. The MRE was calculated using the formula
given in Equation (2).

𝑀𝑀𝑀𝑀𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 𝐸𝐸 [𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝑡𝑡𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝑡𝑡𝐵𝐵−𝐸𝐸𝐵𝐵𝐵𝐵𝑡𝑡𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝑡𝑡𝐵𝐵
𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝑡𝑡𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝑡𝑡𝐵𝐵

] (2)

 Table 9. MRE of actual dataset using the actual time of project completion, 70%, 80% and 90%
confidence time

No. MRE
(Original
Dataset)

MRE with
70%

confidence

MRE with
80%

confidence

MRE with
90%

confidence
1 7.93 4.74 2.78 0.08
2 11.95 8.90 7.02 4.44
3 7.14 3.92 1.94 0.78
4 1.16 4.66 6.82 9.79
5 9.37 6.23 4.30 1.64
6 4.39 8.01 10.24 13.30
7 17.14 14.27 12.50 10.07
8 9.67 6.54 4.61 1.96
9 2.77 0.59 2.66 5.51
10 6.45 10.14 12.41 15.53
11 8.88 5.73 3.78 1.11
12 5.40 9.05 11.30 14.40
13 9.37 13.16 15.50 18.70
14 13.33 10.32 8.48 5.93
15 4.76 8.39 10.62 13.70
16 8.03 4.84 2.88 0.188
17 2.56 6.11 8.30 11.31
18 3.84 0.51 1.53 4.35
19 5 1.70 0.32 3.10

1372 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

20 8.92 5.77 3.82 1.15
21 2.85 0.51 2.58 5.43

Table 9 shows that from the total 21 cases, the MRE has improved in 14 cases when

standard deviation was applied. The MMRE (Mean Magnitude of Relative Error) has also
improved in all the three cases with 70%, 80% and 90% confidence levels. This is shown in
Table 10.

Table 10. MMRE of actual dataset using the actual time of project completion and MMRE with 70%,

80% and 90% confidence levels
MMRE

(Original
Dataset)

MMRE with
70%

confidence

MMRE with
80%

confidence

MMRE with
90%

confidence
7.19 6.38 6.40 6.78

The Fig. 2 shows the MRE of all the kinds of data, the first graph is of the actual MRE from

the dataset, and the next three graphs show the MRE of the actual dataset with the MRE of our
90, 80 and 70% confidence cases respectively.

Fig. 2. MRE graphs of the original dataset and three standard deviation based confident levels

It is interesting to observe that when the original MRE is less, means it is 5% or less then
the MRE for the standard deviation has gone up and not improved the results. We believe that
this dataset is very good in terms of estimation results as the difference between estimated
value and actual value in terms of time is very less. This can be known from the fact that the
highest MRE in the 21 projects’ dataset is 11 percent. Although in estimation it is believed
that 25% difference in actual and estimated in also considered good[1], so we can say that this
dataset is exceptionally good. Considering the improvement is 14 cases in overall 21 cases we
believe that our standard deviation-based technique will help in achieving more accurate
estimates in other datasets where the MRE is ten percent or more, so we expect better results
in all estimation cases.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1373

5. Conclusion and Future Direction
In this paper, we showed a case of analogy-based estimation on a software system; in

order to improve the estimate, we applied simple standard deviation on the estimate. We
conclude that calculating estimates with standard deviation will give more confidence while
committing completion time to the customers. To strengthen our case, we used the same
standard deviation methodology on an available dataset of agile software. Out of 21 instances
where the actual time and estimated time was already given in the dataset our methodology
helped in improving 14 cases. This means an improvement in 66% of the cases which we
showed through the calculation of magnitude of relative error. We conclude that standard
deviation should always be applied to the estimates that are generated in order to gain more
confidence and better chances of accuracy.

In future we plan to use standard deviation methodology on other datasets also; this can also
be applied to cases where software effort is calculated by using other techniques rather than
analogy-based estimation.

References
[1] S. McConnell, Software estimation: demystifying the black art, Microsoft press, 2006.
[2] M. A. Latif, M. Y. Khan, and K. Bashir, “Practices for Achieving Accuracy in Software Costing

and Estimation,” KIET Journal of Computing and Information Sciences, vol. 1, no. 1, pp. 83–95,
2018.

[3] C. N. Parkinson and R. C. Osborn, Parkinson’s law, and other studies in administration, vol. 24.
Houghton Mifflin Boston, 1957.

[4] C. F. Kemerer, “An empirical validation of software cost estimation models,” Communications of
the ACM, vol. 30, no. 5, pp. 416–429, 1987. Article (CrossRef Link).

[5] B. Boehm, C. Abts, and S. Chulani, “Software development cost estimation approaches - A survey,”
Annals of software engineering, vol. 10, no. 1–4, pp. 177–205, 2000. Article (CrossRef Link).

[6] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” IET Software,
vol. 12, no. 3, pp. 161–175, 2018. Article (CrossRef Link).

[7] K. Honda, H. Washizaki, and Y. Fukazawa, “Generalized software reliability model considering
uncertainty and dynamics: Model and applications,” International Journal of Software Engineering
and Knowledge Engineering, vol. 27, no. 06, pp. 967–993, 2017. Article (CrossRef Link).

[8] Y. Singh, A. Kaur, P. K. Bhatia, and O. Sangwan, “Predicting software development effort using
artificial neural network,” International Journal of Software Engineering and Knowledge
Engineering, vol. 20, no. 03, pp. 367–375, 2010. Article (CrossRef Link).

[9] A. Ali and C. Gravino, “A systematic literature review of software effort prediction using machine
learning methods,” Journal of Software: Evolution and Process, vol. 31, no. 10, p. e2211, 2019.
Article (CrossRef Link).

[10] R. Ishizue et al., “Metrics Visualization Techniques Based on Historical Origins and Functional
Layers for Developments by Multiple Organizations,” International Journal of Software
Engineering and Knowledge Engineering, vol. 28, no. 01, pp. 123–147, 2018.
Article (CrossRef Link).

[11] M. Jørgensen, “What we do and don’t know about software development effort estimation,” IEEE
software, vol. 31, no. 2, pp. 37–40, 2014. Article (CrossRef Link).

[12] A. A. Khan and J. Keung, “Systematic review of success factors and barriers for software process
improvement in global software development,” IET software, vol. 10, no. 5, pp. 125–135, 2016,
Article (CrossRef Link).

[13] S. U. Khan and A. W. Khan, “Critical challenges in managing offshore software development
outsourcing contract from vendors’ perspectives,” IET software, vol. 11, no. 1, pp. 1–11, 2017.
Article (CrossRef Link).

https://doi.org/10.1145/22899.22906
https://doi.org/10.1023/A:1018991717352
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1142/S021819401750036X
https://doi.org/10.1142/S0218194010004761
https://doi.org/10.1002/smr.2211
https://doi.org/10.1142/S0218194018500067
https://doi.org/10.1109/MS.2014.49
https://doi.org/10.1049/iet-sen.2015.0038
https://doi.org/10.1049/iet-sen.2015.0080

1374 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

[14] M. Shepperd and C. Schofield, “Estimating software project effort using analogies,” IEEE
Transactions on software engineering, vol. 23, no. 11, pp. 736–743, 1997. Article (CrossRef Link).

[15] A. Idri, F. azzahra Amazal, and A. Abran, “Analogy-based software development effort estimation:
A systematic mapping and review,” Information and Software Technology, vol. 58, pp. 206–230,
2015. Article (CrossRef Link).

[16] V. K. Bardsiri, D. N. Abang Jawawi, and E. Khatibi, “Towards improvement of analogy-based
software development effort estimation: A review,” International Journal of Software Engineering
and Knowledge Engineering, vol. 24, no. 07, pp. 1065–1089, 2014. Article (CrossRef Link).

[17] Y.-F. Li, M. Xie, and T. N. Goh, “A study of project selection and feature weighting for analogy
based software cost estimation,” Journal of Systems and Software, vol. 82, no. 2, pp. 241–252,
2009. Article (CrossRef Link).

[18] E. Kocaguneli, T. Menzies, and J. W. Keung, “Kernel methods for software effort estimation,”
Empirical Software Engineering, vol. 18, no. 1, pp. 1–24, 2013. Article (CrossRef Link).

[19] M. Shanker, J. Jaya, and K. Thanushkodi, “An Effective Approach to Software Cost Estimation
Based on Soft Computing Techniques,” International Arab Journal of Information Technology
(IAJIT), vol. 12, 2015.

[20] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, “A stability assessment of solution
adaptation techniques for analogy-based software effort estimation,” Empirical Software
Engineering, vol. 22, no. 1, pp. 474–504, 2017. Article (CrossRef Link).

[21] A. Idri, M. Hosni, and A. Abran, “Improved estimation of software development effort using
Classical and Fuzzy Analogy ensembles,” Appl Soft Comput, vol. 49, pp. 990–1019, 2016.
Article (CrossRef Link).

[22] I. Abnane and A. Idri, “Evaluating fuzzy analogy on incomplete software projects data,” in Proc.
of 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, 2016.

[23] T. R. Benala and R. Bandarupalli, “Least square support vector machine in analogy-based software
development effort estimation,” in Proc. of 2016 International Conference on Recent Advances
and Innovations in Engineering (ICRAIE), pp. 1–6, 2016.

[24] D. Manikavelan and R. Ponnusamy, “Minimizing Analogy Errors with the Help of Fuzzy,”
International Journal of Applied Engineering Research, vol. 13, no. 6, pp. 4527–4530, 2018.

[25] J. H. C. Wu and J. W. Keung, “Utilizing cluster quality in hierarchical clustering for analogy-based
software effort estimation,” in Proc. of 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), pp. 1–4, 2017.

[26] P. Phannachitta, “Robust comparison of similarity measures in analogy based software effort
estimation,” in Proc. of 2017 11th International Conference on Software, Knowledge, Information
Management and Applications (SKIMA), pp. 1–7, 2017.

[27] V. Nguyen, T. Huynh, B. Boehm, L. Huang, and T. Truong, “Investigating the use of duration-
based windows and estimation by analogy for COCOMO,” Journal of Software: Evolution and
Process, vol. 31, no. 10, p. e2176, 2019. Article (CrossRef Link).

[28] P. Phannachitta, “On an optimal analogy-based software effort estimation,” Inf Softw Technol, vol.
125, p. 106330, 2020. Article (CrossRef Link).

[29] A. Idri, F. A. Amazal, and A. Abran, “Accuracy comparison of analogy-based software
development effort estimation techniques,” International Journal of Intelligent Systems, vol. 31,
no. 2, pp. 128–152, 2016. Article (CrossRef Link).

[30] F. A. Amazal and A. Idri, “Estimating software development effort using fuzzy clustering-based
analogy,” Journal of Software: Evolution and Process, vol. 33, no. 4, p. e2324, 2021.
Article (CrossRef Link).

[31] A. Kaushik, P. Kaur, N. Choudhary, and Priyanka, “Stacking regularization in analogy-based
software effort estimation,” Soft Computing, vol. 26, no. 3, pp. 1197–1216, Feb. 2022.
Article (CrossRef Link).

[32] M. Dashti, T. J. Gandomani, D. H. Adeh, H. Zulzalil, and A. B. M. Sultan, “LEMABE: a novel
framework to improve analogy-based software cost estimation using learnable evolution model,”
PeerJ Comput Sci, vol. 8, p. e800, 2022. Article (CrossRef Link).

https://doi.org/10.1109/32.637387
https://doi.org/10.1016/j.infsof.2014.07.013
https://doi.org/10.1142/S0218194014500351
https://doi.org/10.1016/j.jss.2008.06.001
https://doi.org/10.1007/s10664-011-9189-1
https://doi.org/10.1007/s10664-016-9434-8
https://doi.org/10.1016/j.asoc.2016.08.012
https://doi.org/10.1002/smr.2176
https://doi.org/10.1016/j.infsof.2020.106330
https://doi.org/10.1002/int.21748
https://doi.org/10.1002/smr.2324
https://doi.org/10.1007/s00500-021-06564-w
https://doi.org/10.7717/peerj-cs.800/supp-1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023 1375

[33] M. Azzeh, Y. Elsheikh, and M. Alseid, “An optimized analogy-based project effort estimation,”
arXiv preprint arXiv:1703.04563, 2017. Article (CrossRef Link).

[34] S. Ezghari and A. Zahi, “Uncertainty management in software effort estimation using a consistent
fuzzy analogy-based method,” Applied Soft Computing, vol. 67, pp. 540–557, 2018.
Article (CrossRef Link).

[35] S. D. N. S. S. B. Rumjaun, K. A. Gutteea, and L. Nagowah, “Effortest-an enhanced software effort
estimation by analogy method,” ADBU Journal of Engineering Technology, vol. 5, no. 2, 2016.

[36] F. Fellir, K. Nafil, R. Touahni, and L. Chung, “Improving case based software effort estimation
using a multi-criteria decision technique,” in Proc. of Computer Science On-line Conference, pp.
438–451, 20108.

[37] F. A. Amazal, A. Idri, and A. Abran, “Software development effort estimation using classical and
fuzzy analogy: a cross-validation comparative study,” Int J Comput Intell Appl, vol. 13, no. 03, p.
1450013, 2014.

[38] L. H. Putnam, “Estimating software cost,” Datamation, pp. 171–178, 1979.
[39] M. Usman, J. Börstler, and K. Petersen, “An effort estimation taxonomy for agile software

development,” International Journal of Software Engineering and Knowledge Engineering, vol.
27, no. 04, pp. 641–674, 2017.

[40] S. K. T. Ziauddin and S. Zia, “An effort estimation model for agile software development,”
Advances in computer science and its applications (ACSA), vol. 2, no. 1, pp. 314–324, 2012.

https://doi.org/10.48550/arXiv.1703.04563
https://doi.org/10.1016/j.asoc.2018.03.022

1376 Mohammad A. Latif et al.: Using Standard Deviation with Analogy-Based
Estimation for Improved Software Effort Prediction

Mohammad Ayub Latif is a PhD candidate at Karachi Institute of Economics and
Technology (KIET), he is also associated as a full-time faculty member at KIET with the
College of Computing and Information Sciences. He has many publications in international
journals and conferences. He has also written a book chapter for a book on Global Software
Engineering which is published by IGI Global. His research interest are related to software
metrics and measurements where the core focus is on software costing and estimation.

Prof. Dr. Muhammad Khalid Khan is the Associate Dean & Director - Faculty of
Computing and Information Sciences at Karachi Institute of Economics and Technology
(KIET), Pakistan. He is a seasoned professional having an experience of over two decades in
Information System implementation, training, coaching and research. He holds a Post
Doctorate in Blockchain and Predictive Analytics from UTP, Malaysia and PhD in Computer
Science. He has attended two Master programs, one in Computer Science and the other in
Business Administration. In the academic leadership role, Dr. Khalid is responsible for more
than 2000 students and 100+ faculty and staff members. He is looking after six Bachelors
Programs, two Masters Programs and a PhD Program at KIET. He regularly conducts
corporate trainings for various commercial organizations. Dr. Khalid has won many research
funding from National and International agencies including UTP Malaysia and NRPU, TDF,
NCAI funding from HEC Pakistan. The total award is above 30 Million PKR. Dr. Khalid has
published and presented more than 60+ articles in peer reviewed international journals and
conferences. His citation count is well above 600. For complete list
(https://scholar.google.com.pk/citations?user=6aqBzAgAAAAJ&hl=en) Dr. Khalid’s
research interest include Blockchain scalability & Trust Mechanisms, Desktop Grids &
Decentralized clouds, IoT based Healthcare & Air Quality Monitoring, Business Intelligence
& Predictive Analytics, Technology Startups & Emerging Software Development Practices.

Dr. Umema Hani received PhD in Software Engineering from (GSESIT, Hamdard
University) in 2019. She is working for industry and academia in a domain of Software
Engineering since year 2000. She has done research in areas such as, Process improvement,
Quality benefit measurement, Software Estimation models, Productivity measurement, IoT,
Secure coding, Size estimation using Empirical and Case study based research.

