
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May. 2023                                  1356 
Copyright ⓒ 2023 KSII 

 

 
http://doi.org/10.3837/tiis.2023.05.003                                                                                                               ISSN : 1976-7277 

 Using Standard Deviation with Analogy-
Based Estimation for Improved Software 

Effort Prediction 
 

Mohammad Ayub Latif1*, Muhammad Khalid Khan1 and Umema Hani1 
1 College of Computing and Information Sciences,  
Karachi Institute of Economics and Technology 

Karachi, Pakistan 
[e-mail: malatif@kiet.edu.pk, khalid.khan@kiet.edu.pk, dr.umema@kiet.edu.pk] 

Corresponding author: Mohammad Ayub Latif 
 

Received April 6, 2022; revised November 20, 2022; accepted April 28, 2023;  
published May 31, 2023 

 
Abstract 

 
Software effort estimation is one of the most difficult tasks in software development whereas 
predictability is also of equal importance for strategic management. Accurate prediction of the 
actual cost that will be incurred in software development can be very beneficial for the strategic 
management. This study discusses the latest trends in software estimation focusing on 
analogy-based techniques to show how they have improved the accuracy for software effort 
estimation. It applies the standard deviation technique to the expected value of analogy-based 
estimates to improve accuracy. In more than 60 percent cases the applied technique of this 
study helped in improving the accuracy of software estimation by reducing the Magnitude of 
Relative Error (MRE). The technique is simple and it calculates the expected value of cost or 
time and then uses different confidence levels which help in making more accurate 
commitments to the customers.   
 
 
Keywords: Effort Estimation, Analogy-based estimation, improving accuracy, standard 
deviation in effort estimation, commitments to customers. 
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1. Introduction 

When planning about the effort or cost estimation of a software four important 
considerations before selecting an estimation model are the project size, software development 
style, the development stage and the required accuracy. The size can be classified as small, 
medium and large, different estimation models have their defined values for the size; the 
development style can be sequential, iterative or coupled. The development stage refers to the 
time in the lifecycle when an estimator is estimating the project; it can be the start of the project 
which is early requirements, to middle or late. The fourth consideration is the accuracy which 
an estimator is targeting;  

After getting the outputs from an estimation model, data is needed for calibrating it into 
meaningful estimates. All models require data and, in his book, Steve McConnell has 
identified three types of data. Industrial data is the data of other organizations, historical data 
is the data of the same organization of previous projects and project data is the data of the 
project which is estimated. One requirement for the use of project data is that, the project 
which needs to be estimated should follow the iterative development life cycle, so the data of 
the first iteration can be used for the calculations of later iterations [1].  

Researchers have also shown that least accurate results are from calibration done with 
industrial data, the historical data gives better results than the industrial data and the most 
accurate results with lowest variance is by the use of the project data [2]. Project managers 
need to check that completion time for a task is given intelligently so that Parkinson’s Law 
does not apply in their on-going projects. Parkinson’s Law states that work generally takes up 
all the time which is allocated for a task. So, if you give your developers, four days to finish a 
one-day task, it is expected that the task will now acquire four days [3][4]. Mostly in the 
modern era we have dynamic estimation models than compared to the flat models in which 
the number of team members can vary with respect to the different phases of the SDLC. With 
a dynamic estimation model the team size can be of 2 people in the requirement phase and 10 
people in the development phase [1][5][2].  

Broadly software estimation models are divided into two different categories algorithmic 
and non-algorithm model. The popular models in algorithm models are Lines of Code (LOC), 
Function points (FP) and Constructive Cost model (COCOMO). The non-algorithmic models 
comprise of expert judgment, analogy-based techniques, proxy techniques and pricing to win.  

Estimation for defects through a defect prediction mechanisms for software with 
identification of challenges for defect prediction [6] shows the use of estimation which is other 
than cost, time and effort. The control of software activities and predicting about when a 
development will end is a difficult task, in order to adapt changes, some researchers have 
proposed a generalized software reliability model that is based on stochastic process to 
stimulate the software development that includes uncertainty [7]. Another study has explored 
the possibilities of application of Artificial Neural Network (ANN) as a tool for predicting 
software development effort. It proposed an ANN model for predicting software development 
effort [8]. In another work a systematic review of software effort estimation models built using 
ML techniques. All the empirical studied published in the time period of January 1991 to 
December 2017 were considered in the review. The work concludes that  support vector 
machines (SVM) and regression techniques in combination are characterized by better 
predictions when compared with other Machine learning and non-Machine learning techniques 
[9]. It is important to note that metrics not only pertain to software costing and estimation; 
product metrics usage can lead towards better software quality. A study has  proposed new 
technique for the visualization of metrics which will ultimately help in improving the software 
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quality [10].   
Generally, most of the project managers know that there is no best effort estimation model 

or method that can be applied to a particular case of estimation, if the client is forcing for a 
low-cost solution this can also lead to an overrun. Other important known concept is that 
estimations are often misleading [11]. It is well understood that Software Process 
Improvement can occur if we move towards better estimation for software. In recent times the 
concept of Global Software Engineering (GSE) has also emerged and many organizations are 
involved in Global Software Development (GSD). A systematic literature review is performed 
on success factors and barriers to software process improvement for Global Software 
Development (GSD) [12]. The concept of GSD has also given rise to offshore software 
development where low-cost countries are used for developing software for another country. 
A study has identified the challenges for managing offshore contracts from the vendors’ 
perspectives [13].  

The core idea of analogy-based effort estimation (ABEE) is that you can create the estimate 
of a new project by comparing it with the estimates of an old project which has already been 
accomplished by your organization. ABEE or estimation by analogy comprises of 4 major 
steps for calculating the effort of the software as shown in Fig. 1:  

 

 
Fig. 1. Steps for Estimation by analogy. 

The pioneers of introducing analogy based estimates were Shepperd and Schofield and they 
proposed this as a non-algorithm model for software effort estimation [14]. There are a few 
constraints which are mandatory for the accuracy of estimation by analogy; the first 
consideration is that the size of the previous and the current project should not vary on a larger 
scale. The development technologies for the both the projects should be same, this means if a 
project is to be developed in C# language, we cannot use a project developed in C Language 
as the baseline project. The difference between the team sizes of the new and the old project 
should also be minimal. Another important constraint is that the type of the projects should be 
same, a system software cannot be compared to form an estimate of an information system [1].  
 

Following are the major contributions of the present study:  
 
1. Detailed review of analogy-based effort estimation techniques in recent years and 

how different improvements have been suggested in them to achieve better 
accuracy. 

2. A simplified real case study that shows the effort estimation of a software in a 
simplified way.  

1
Getting data of 

similar past 
project. 

2
Comparing of size 

of new project with 
the old project 

3
Building up the 
estimate of the 

new project's size. 

4
Building up the 
estimate of the 

new project. 
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3. Very simple technique of standard deviation applied to the initial calculated effort 
in order to achieve better accuracy.  

4. Validation of achieving improvement through the proposed approach over an 
available industrial dataset from different software houses.   

 
The rest of the paper is structured as follows, in section 2 we provide the related work which 

focuses on the latest research trends related to analogy-based effort estimation. In section 3 we 
present a simple case of estimation by analogy and show the calculation of effort in terms of 
persons-month and we also recommend how the estimation by analogy can be improved by 
using standard deviation. We also apply our standard deviation methodology on an available 
dataset for agile software. In section 4 we provide our results and discussion and in section 5 
we conclude our paper with directions for future research.  

 
2. Related Work 

 
In this section we look into all the work that has been carried out related to analogy-based 

estimation, we investigate the variants of analogy-based estimation and how improvements to 
the traditional methods had been shown by different researchers.  

A systematic mapping of ASSE papers from 1990 to 2012 has been performed. The research 
objectives were to identify the studies with respect to the estimation accuracy, comparison of 
accuracy, context of the estimation, ASSE tools and impact of techniques which were used in 
combination to ASSE method [15].  

To find improvements in ASSE technique a domain of review comprised of 24 papers which 
were selected through a formal tough process. The results show that improvement of ABE can 
be performed through adjustment, grey theory, attribute weighting and attribute selection 
techniques [16].  

Analogy based estimation (ABE) is criticized because of low prediction accuracy, the large 
memory requirement and the expensive computation cost. To provide a solution for these 
problems a project selection technique for ABE (PSABE) is proposed which reduces the whole 
project base into a small subset that consist only of representative projects. Finally, PSABE is 
combined with the feature weighting to form FWPSABE for a further improvement of ABE. 
To validate the methods four datasets are used (two real-world sets and two artificial sets) and 
compared with conventional ABE, feature weighted ABE (FWABE), and machine learning 
methods. The results conclude that project selection technique could significantly improve 
analogy-based models for software cost estimation [17]. 

A work has investigated non-uniform weighting through kernel density estimation. After an 
extensive experimentation of 19 datasets, 3 evaluation criteria, 5 kernels, 5 bandwidth values 
and a total of 2090 ABE variants, it concludes that non-uniform weighting through kernel 
methods cannot outperform uniform weighting ABE [18].  

A novel technique is proposed that relies on reasoning by analogy, fuzzy logic and linguistic 
quantifiers for estimating effort, provided that the software project is represented either by 
categorical or numerical data. Use of fuzzy logic-based cost estimation models is more suitable 
if unclear or inaccurate information are considered [19]. 

In a work to rank the adaptation techniques of analogy-based estimation a  comparison of 
eight different ranking techniques for analogy-based estimation using larger datasets 
concludes that linear adaptation techniques outperform all other techniques [20].  

To achieve accuracy and as to the fact that no estimation model outperforms other models 
in all situations, the importance of estimating from ensembles of various single technique. A 
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work proposes similar ensembles based on single classical analogy and single fuzzy analogy. 
Experiments were conducted across seven datasets, that concludes that fuzzy analogy 
ensembles achieved better performance than classical analogy ensembles [21].   

Ibtissam Abnan et. al. used missing data techniques with fuzzy analogy. They found that 
Pred (0.25) and Standardized Accuracy (SA) measure different aspects of technique 
performance. They suggest that SA should not be used alone to conclude about a technique’s 
accuracy and other metrics should also be involved with it and they recommend the 
involvement of Pred (0.25) as the other metric [22].   

A Squares Support Vector Machine (LS-SVM) method that is nonlinear adjustment method 
is used for calibration. The work tested it on some datasets and compared it results with 
artificial neural network (ANN) and extreme learning machines (ELM) [23].      

To overcome the errors related to analogy-based estimation, a work shows that S-
membership function can be used to overcome the problems of an estimator to select the right 
set of projects to reach to a comparison [24].  

Analogy-based estimation is built upon the principle of case-based reasoning (CBR) based 
on the k similar projects completed in the past. Therefore, the determination of the k value is 
crucial to the prediction performance. The researchers have worked and proposed a technique 
that uses hierarchical clustering in order to produce a range for k through various cluster 
quality criteria [25]. 

A research has compared six similarity measures for analogy-based estimation, it concludes 
that Euclidean and Manhattan similarity measures gives more accurate result in estimation for 
the datasets of software projects [26].  

A work finds out, that instead of keeping all the historical data for COCOMO, using recently 
completed projects data of shorter duration will help in more accurate results in estimation. 
Similarly, k-nearest neighbors will also produce accurate results for Estimation by analogy 
[27].  

Achieving accuracy in projects where the size of the current project is different to the 
completed past projects relies on effort adaptation. The work performs systematic comparison 
of effort estimators that were optimized by Bayesian optimization techniques. The experiment 
was carried out on 13 standard datasets. It concludes that a model which integrates gradient 
boosting machine algorithm has out-performed all other techniques [28].  

A new analogy-based approach is proposed named as 2FA-kprototypes that can be utilized 
when both kind of attributes are involved. It used some datasets to compare the accuracy of 
2FA-kprototypes with the traditional analogy-based estimation and 2FA-kmodes (this 
technique was developed in their earlier research). The verification results showed that 2FA-
kprototypes and 2FA-kmodes both techniques performed better than traditional analogy-based 
effort estimation [29].    

Where software projects are defined by a combination of continuous and categorical 
features; in a work an improvement is made to the 2FA-kprototypes techniques by using the 
2FA-cmeans. This new techniques uses a fuzzy c-mean clustering technique that cluster 
objects which have mixed attributes. This 2FA-cmeans was tested on 6 different datasets and 
it outperforms their previous 2FA-kprototype technique and also all other classical analogy 
techniques [30].  

A new solution function has been proposed to improve the estimation accuracy of Analogy 
based estimates. The function is called SABE (Stacking Regularization in analogy-based 
software effort estimation. The crucial point about SABE is stacking which is a machine 
learning technique. Stacking works on multiple models and combines the capabilities of all in 
order to better predict the estimate. Four different datasets are used for validation and results 
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suggested that SABE’s performance is better than the former studies [31].  
A study has investigated the effect of the LEM algorithm on optimization of features 

weighting and have proposed a new method. They checked the effectiveness of the algorithm 
on two datasets, Desharnais and Maxwell. They used evaluation metrics like MMRE, PRED 
(0.25), and MdMRE to evaluate and compare the proposed method against previous algorithms. 
Their technique show considerable improvement in estimating the cost of the software [32]. 

As analogy-based estimation requires prediction of the best number of analogies and 
adjustment technique selection for achieving the best possible estimates, a work has proposed 
a new adjusted ABE model for optimization and approximation of complex relationships 
between different features. It shows that the use of this model has improved the performance 
of ABE [33].  

A proposed estimation model known as the Fuzzy Analogy based Software Effort 
Estimation model (FASEE) makes successful use of fuzzy logic with approximate reasoning 
theory to handle imprecision and uncertainty. In a recent work enhancement has been made to 
the FASEE model and problems related to the low quality of data and uncertainty in the 
reasoning process are solved to some extent. This new model is compared in thirteen software 
project datasets and it is concluded that the model performs better in terms of accuracy. The 
model is named as Consistent Fuzzy Analogy-based Software Effort Estimation (CFASEE) 
[34].  

The shortcomings of Analogy-Based estimation tools are identified and a new enhanced 
model for analogy-based estimation is proposed. A system prototype is also prepared which is 
called EffortEst and it is based on the enhanced model. The authors have shown that EffortEst 
provides the nearest best estimation and the user intervention is also minimal [35]. 

A new framework is proposed that uses case-based reasoning (CBR) model along with 
considering the comprehensive set of requirements that includes the functional, non-functional 
requirements both along with the domain properties. The framework is tested on a set of thirty-
six students projects and shows that the difference in terms of calculated and actual effort was 
in the range of 10% [36].  

International Software Benchmarking Standards Group (ISBSG) dataset is used in a study 
to confirm that the usefulness of applying linguistic values rather than the numerical values in 
analogy-based estimation can bring much better results in terms of accuracy[37].   

The Table 1 below shows the references of the work carried out for bringing an 
improvement in the analogy-based estimates. The Table 1 headers are restricted to paper 
reference, pros and cons, the accuracy metric used and the details of the accuracy in the last 
column. Only those studies are entered in the Table 1 from the reported studies which tested 
the analogy-estimation improvement technique and validated it by using some accuracy 
metrics.  

 
Table 1. Comparative analysis of existing approaches for improvement in ABEE 

Paper 
ID 

Proposed 
Technique 
Name 

Pros Cons  Accuracy 
Metric 

Accuracy 

[17] Feature 
Weighing 
Project 
Selection 
Technique 
for 
Analogy-

Promising result 
that it can 
significantly 
improve the 
analogy-based 
estimation even 
the ones which 

Comparatively 
smaller memory 
requirement because 
of only selected 
projects.  
 
Only tested for 

Mean 
Magnitude 
Relative Error 
(MMRE)  
 
Pred (0.25) 
 

For both the 
real and the 
artificial 
datasets the 
proposed 
technique 
based on 
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based 
estimation.  

already applied 
feature 
weighing.  
 
Lesser 
computation cost 
than compared to 
traditional 
analogy-based 
estimation.  

projects developed 
using the waterfall 
methodology. 

Median 
Magnitude of 
Relative Error 
(MdMRE) 

feature 
weights 
project 
selection 
outperformed 
all other 
techniques in 
most cases 
which was 
validated by 
using accuracy 
metrics. 
 
For the real 
dataset their 
proposed 
techniques 
achieved the 
best testing 
performance 
(0.32 for 
MMRE, 0.44 
for PRED 
(0.25) and 
0.29 for 
MdMRE) 

[37] 
 
 
 
 
 

Fuzzy 
Analogy 
with 
Linguistic 
values.  

Simple 
explanation of 
classical analogy 
and fuzzy 
analogy is 
provided in the 
work.   
 
Promising 
results for Fuzzy 
analogy than 
compared to 
classical 
analogy.  
 

 

Diverse datasets 
from different 
applications 
domains are not 
accommodated. 
 
Datasets with high 
quality ratings were 
included in the 
experiment and 
datasets classified of 
lesser quality were 
ignored.  
 
The technique was 
only tested for new 
development, this 
leaves a question 
mark for using the 
technique for the 
enhancements of 
existing projects or 
redevelopment.   

Pred (20) For All-in 
method for 
evaluation the 
values of Pred 
(20) are 50 and 
76.35 using 
Classical and 
Fuzzy 
Analogy 
respectively; 
For Jackknife 
method, the 
values of Pred 
(20) are 16.89 
and 24.32 
using 
Classical and 
Fuzzy 
Analogy 
respectively. 
In both the 
cases there is 
improvement 
through the 
Fuzzy 
Analogy 
technique.  
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[19] Cost 
Estimation 
based on 
soft 
computing 
techniques.  

Block diagram is 
created for the 
techniques 
which makes it 
easy to 
understand the 
proposed 
technique.  
 

MMRE calculation 
was made only for 
one dataset, 
although the work 
utilized three 
datasets in the 
experiment.  
 
The datasets are old 
and surely does not 
accommodate the 
software which are 
developed using the 
newer 
methodologies of 
software 
development.  

Mean 
Absolute 
Relative Error 
(MARE) 
 
Mean 
Magnitude of 
Relative Error 
(MdMRE) 

The MMRE 
for the 
COCOMO 
NASA Dataset 
reduced to 2.6 
percent with 
the proposed 
method than 
compared to 
two other 
methods 
where the 
calculated 
MMRE was 
32.65 percent 
and 56.46 
percent 
respectively.  

[21] Fuzzy 
Analogy 
Ensembles.  

The work 
provides an 
investigation of 
fuzzy and 
classical analogy 
ensemble 
technique used 
for effort 
estimation. The 
study answers 
four research 
questions that 
relates to 
estimation 
through 
ensembles for 
analogy.  

The work only 
incorporated 
numerical attributes 
and categorical data 
was missed out.  
  

Standardized 
Accuracy 
(SA) based on 
Mean 
Absolute 
Error (MAE)  

Fuzzy 
Analogy 
ensembles 
often 
outperform 
Classical 
Analogy 
ensembles in 
terms of SA 
even though 
whatever 
combiner rule 
and number of 
solo 
techniques are 
used to 
construct the 
ensembles. 

[25] Hierarchical 
clustering 
for 
Analogy-
based effort 
estimation.  

The research 
work pointed 
towards the 
problem domain 
for identifying 
the clustering 
technique on the 
basis of datasets, 
i.e. which 
clustering 
technique will be 
feasible for 
which kind of a 
dataset.   

For Random k only 
one other technique 
(Baker’s Technique) 
was evaluated with 
the proposed 
technique although 
many other 
techniques exist for 
keeping a random 
value of k.  

Mean 
Magnitude 
Relative Error 
(MMRE) 

They tested 
their proposed 
technique of 
hierarchical 
clustering on 
six datasets 
and compared 
it with other 
variants of 
dynamic k size 
and fixed k 
size. Out of 
the 6 datasets 
the MMRE 
was improved 
in three cases 
using the 
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proposed 
approach. For 
the Desharnais 
dataset they 
reported the 
lowest MMRE 
at 0.492 than 
compared to 
the other four 
techniques.  

[28] Effort 
adaptation 
using 
gradient 
boosting 
machine 
algorithm 

Highly accurate 
and intuitive 
proposed model 
that does not 
require any 
expert 
interactions.  
 
10 effort 
estimation 
techniques are 
compared in the 
study.  

Not tested for 
search-based effort 
estimation 
techniques.  

The study 
used the 
losses metric 
based on six 
different 
accuracy 
metrics used 
for effort 
estimation.  

The loses were 
counted at 
minimum for 
the proposed 
technique and 
all the 13 
datasets which 
incorporated 
the proposed 
technique had 
losses at the 
lowest group 
i.e. is from 0% 
to 5%. None 
other 
compared 
technique 
could 
categorize all 
the datasets in 
the lowest 
losses group.  

[32] Learning 
Objective 
Model with 
Analogy-
Based 
Estimation 
(LEMABE)
.  

The study has 
combined the 
Learning 
Evolution model 
with analogy-
based 
estimation, a 
flowchart 
algorithm is also 
provided for the 
technique.  

N/A Mean 
Magnitude 
Relative Error 
(MMRE)  
 
Pred (0.25) 
 
Median 
Magnitude of 
Relative Error 
(MdMRE) 

Of the 3 
different 
datasets used 
for validating 
the technique 
for the 
Deshernais 
dataset, it 
produced the 
best result for 
all the three 
different 
accuracy 
metrics than 
compared to 
all other 
techniques. 
The results 
were MMRE 
= 0.21, Pred 
(0.25) = 0.60, 
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and MdMRE 
= 0.15. In al 
other datasets 
also, there was 
significant 
improvement 
by utilizing 
the proposed 
technique. 

[35] EffortEst 
(Effort 
Estimation) 

Critical analysis 
of estimation 
models is 
performed to 
identify the short 
comings.  
 
User 
intervention is 
limited with the 
proposed 
technique and 
they have also 
developed a 
prototype for the 
estimation tool.  

The EffortEst is 
compared with only 
three other 
estimation tools, 
although there are 
numerous 
estimation tools 
available for effort 
estimation.  
 
Lack of evidence for 
claiming that 
ESTOR with which 
they compared their 
estimation tool is the 
best.  
 
 

Persons-
month 

The calculated 
effort through 
EffortEst in 
the study was 
closest to the 
estimate 
calculated 
through a tool 
which they 
claimed as the 
best 
estimation tool 
and the name 
of the tool 
with which 
they compared 
EffortEst is 
ESTOR.  

[36] Multi-
criteria 
decision 
technique.  

Uses 
incremental 
approach for 
software 
prediction at an 
early stage of 
software 
development.  

The work only 
relied on students’ 
projects for 
validation, this 
means no real world 
or industrial dataset 
was used for 
calculating the 
accuracy.  

Pred (0.10) The work has 
validated the 
proposed 
methodology 
on 36 
students’ 
projects and 
they used the 
predictability 
metric at 10%. 
97% of the 
total projects 
met the pred 
(0.10) criteria.   

 
The section 3 presents a case study based on analogy-based estimate and then also shows 

how it can be improved using the standard deviation technique which we have proposed. The 
best thing about our approach is we have provided a complete case study step by step. Unlike 
in most of the studies the core advantage we have in our dataset is that it is based on the agile 
methodology. Secondly our dataset is collected from six different software houses of Pakistan.   
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3. Analogy-Based Estimation Technique 
 

In this section we present a small and a simple case so that the readers can have an idea as 
to how the analogy-based estimation works. Let’s suppose an organization has recently created 
a project in which they have worked on a biometric system for marking attendance of 
employees of a company and created a web application for their HR team including charts for 
performance analysis of employee’s office timing and an android application for upper 
management to watch the data and keep an eye on employees attendance. 

Now a new client needs a similar Attendance system with a little difference. In the new case 
some employees of the company work on client sites, while others work in office. So, the 
attendance could not be marked using the thumb machine as it is installed at company’s office 
and not at the client’s location. Considering this problem, the new solution is an android 
application that will provide login for the employees of that company and when those 
employees will enter the client’s premises, the location service will be used to mark their 
attendance. 

The organization has chosen estimation by analogy for this project as this project is almost 
similar to previous project. For the initial step the Table 2 shows the previous project’s 
modules, their LOCs, number of features of previous and new project. Finally, it also shows 
the multiplication factor used for the new project calculated from the details of previous and 
new project.  

 
Table 2. LOC of previous similar project and the current project 

Modules 
(LOCS) 

Previous 
Project 
Detail 
LOC 

Previous 
Project 
Detail 

Current 
Project 

Multipl
ication 
Factor 

Current 
Project LOC 

Requirement 
Analysis 

8000 60 
features 

90 
features 

1.5 12000 

MySQL 
Tables 

17500 20 tables 25 tables 1.25 21875 

Android 
Part 

6000 6 
activities 

12 
activities 

2 12000 

Graphs and 
Charts 

2000 5 charts 10 charts 2 4000 

Java Code 30000 80 classes 90 
classes 

1.125 33750 

APIs 4000 6 APIs 9 APIs 1.5 6000 
Hardware 
Integration 

20000 40 classes 48 
classes 

1.2 24000 

SQL Classes 6000 12 classes 12 
classes 

1 6000 

Total 93500    119625 
 

In Table 2, the multiplication factor is calculated by dividing the previous project features 
with the new project features. The LOC of the new project is calculated by simply multiplying 
the previous project’s LOC with the multiplication factor.   

Using the LOCs of the previous and current project the size ratio is calculated and it is 
shown that the effort for the current project is estimated at 64 staff-months than compared to 
the effort of 50 staff-months of the previous project. Table 3 shows the details.  
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Table 3. Effort of the new project in staff-months 
 

 
3.1. Improving the Analogy-Based Estimation 
 

This subsection shows the use of simple standard deviation technique to get better 
confidence for the estimate that was calculated in the last section. Standard deviation technique 
requires worst case, best case and most likely estimates. To incorporate this from the previous 
multiplication factor for analogy estimates, we will have three values, one for the best case, 
the other for the most likely and the last for the worst case. From the three values we will 
generate the expected value as suggested by Putnam[38]. The Table 4 below shows the best 
case, worst case and the most likely values of the previously calculated multiplication factor. 
Our new estimation case incorporating the best and the worst cases is given in the Table 4.  
 

Table 4. Best- and Worst-case LOC calculation of the new project 
MF: Multiplication Factor 

Modules 
(LOCS) 

Previous 
Project 
LOC 

MF 
(Best 
Case) 

MF 
(Most 

Likely) 

MF 
(Worst 
Case) 

Current 
Project 
LOC 
(Best 
Case) 

Current 
Project 
LOC 
(Most 

Likely) 

Current 
Project 
LOC 

(Worst 
Case) 

Requirement 
Analysis 

8000 1 1.5 2 8000 12000 16000 

MySQL 
Tables 

17500 0.80 1.25 1.4 14000 21875 24500 

Android Part 6000 1.25 2 2.40 7500 12000 14400 
Graphs and 

Charts 
2000 1.5 2 2.75 3000 4000 5500 

Java Code 30000 1 1.125 1.75 30000 33750 52500 
APIs 4000 1 1.5 1.80 4000 6000 7200 

Hardware 
Integration 

20000 0.8 1.2 1.80 16000 24000 36000 

SQL Classes 6000 0.5 1 1.25 3000 6000 7500 
Total 93500    85500 119625 147600 

 
In Table 4 we also calculate the best case, worst case and most like size of the software in 
terms of LOC.  

Using the approach of calculating the effort in terms of staff-months, now when we use the 
values of LOC best case, LOC most likely and LOC worst case. Effort for all the three cases 
is shown in Table 5. 
 

Table 5. Best and worst and most likely effort in persons-month 
Best Case Effort  Most Likely Effort  Worst Case Effort 
46 staff-months 64 staff-months 79 staff-months 

 

Term Value 
Current Project LOC 119625 
Previous Project LOC 93500 

Size Ratio 1.28 
Previous Project Effort 50 staff-months 
Current Project Effort 64 staff-months 
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A known way in statistics is to assume that the one sixth of a difference between a maxima 
and minima is equal to one standard deviation. This way of calculating the standard deviation 
assumes that the maxima include 99.86% percent chances of meeting the estimate and the 
minima holds 0.135% percent chances[1]. As defined the standard deviation will be the 
difference between maxima and minima divided by 6. In our case it will be 79-46/6=33/6=5.5. 
And our expected case will be based on the Expected value formula which is shown in 
Equation (1). 
   

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 = [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+(4 𝑥𝑥 𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)+𝑊𝑊𝑀𝑀𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵]
6

     (1) 
 

In our case the Expected Value is 63.5 which is almost 64 staff-months. So, in our case our 
most likely value is also our expected value. In order to be more confident on our calculated 
effort value, we see the percentage confident statistically valid values for 70%, 80% and 90% 
percentage confident calculations in the Table 6. The values are also given in the book by 
Steve McConnell[1]. The standard deviation was 5.5 as calculated previously.   
 

Table 6. Estimated Effort with different percentage confidence 
Percentage 
Confident  

Calculation                                               Effort Estimation 

70% Expected Case + (0.52 x SD)  66.86=67 staff-months 
80% Expected Case + (0.84 x SD)  68.62=69 staff-months 
90% Expected Case + (1.28 x SD)  71.04=71 staff-months 

   
As shown in the Table 6, committing 71 staff-months as effort for our system will have 90% 

confidence that the project will not take more than 71 staff-months, similarly 67 staff-months 
and 69 staff-months will have 70% and 80% confidence respectively. By incorporating this 
standard deviation in analogy-based estimation, there are more chances of meeting our 
commitment that will lead to better level of customer satisfaction.  

To strengthen our approach, we have used this mechanism in a dataset for agile based 
estimation. As agile based development uses an iterative and incremental approach, expert 
judgment is also used for effort estimation in agile based software system.  

Agile based estimation generally uses the analogy-based estimation therefore we believe 
it’s a good choice to implement this mechanism on an agile based dataset. The authors in their 
research work have identified through the systematic literature review and survey that one of 
the most frequently estimation technique for agile based development is estimation by analogy, 
they have nicely classified the estimation techniques for agile based software development 
[39].  

The dataset used for using standard deviation approach in order to improve the effort 
estimation contains data of 21 previous projects developed using Scrum-based agile software 
development. The dataset has been collected from [40] which claims that the data was first 
collected from six different software houses of Pakistan. The dataset contains 21 instances and 
9 attributes. Each instance represents one project related data which provides information 
including Sprint Size, monthly Work Days, Team’s Initial Velocity (Vi), total Time for 
completing one sprint, total Cost spend on one sprint, Efforts completed by the team in one 
sprint, monthly Team Salary, Dynamic Force Factor (D) and Teams’ Final Velocity (V). In 
order to show the use of standard deviation on the dataset we will use the values of actual time 
and estimated times as shown in Table 7. The Table 7 only shows that values that we will be 
using for our case.  
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Table 6. Dataset of 21 software developed using agile methodology 
No. Actual Time Est. time 
1 63 58 
2 92 81 
3 56 52 
4 86 87 
5 32 29 
6 91 95 
7 35 29 
8 93 84 
9 36 35 
10 62 66 
11 45 41 
12 37 39 
13 32 35 
14 30 26 
15 21 22 
16 112 103 
17 39 40 
18 52 50 
19 80 76 
20 56 51 
21 35 34 

 
 

In order to incorporate the standard deviation, we have first calculated the best case and 
worst case from the estimated time. As we did not have the actual best case and worst-case 
figures, we just subtracted 20% from the estimated time for the best case and added 20 percent 
to the estimated time for the worst case. We assumed the estimated time as the most likely 
value, using these three values we calculated the expected value as discussed in the example 
previously. As same percentage was used for generating the best and the worst case, the 
expected value is same as the estimated value given in the dataset. But this approach helped 
us in calculating the standard deviation with the help of which we were able to generate more 
than one estimated time with different level of confidence. In Table 8 we show our standard 
deviation part on the dataset and also show the new estimated time with 70, 80 and 90% 
confident levels. 
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 Table 8. Standard Deviation and different confidence levels of time 
No. Est. 

time 
Est. 
time 
(ML) 

WC BC EV SD 70% 80% 90% Actu
al 

1 58 58 46.4 69.6 58 3.86 60.01 61.2
4 

62.9
4 

63 

2 81 81 64.8 97.2 81 5.4 83.80 85.5
3 

87.9
1 

92 

3 52 52 41.6 62.4 52 3.46 53.80 54.9
1 

56.4
3 

56 

4 87 87 69.6 104.
4 

87 5.8 90.01 91.8
7 

94.4
2 

86 

5 29 29 23.2 34.8 29 1.93 30.0 30.6
2 

31.4
7 

32 

6 95 95 76 114 95 6.33 98.29 100.
3 

103.
1 

91 

7 29 29 23.2 34.8 29 1.93 30.0 30.6
2 

31.4
7 

35 

8 84 84 67.2 100.
8 

84 5.6 86.91 88.7
0 

91.1
6 

93 

9 35 35 28 42 35 2.33 36.21 36.9
6 

37.9
8 

36 

10 66 66 52.8 79.2 66 4.4 68.28 69.6
9 

71.6
3 

62 

11 41 41 32.8 49.2 41 2.73 42.42 43.2
9 

44.4
9 

45 

12 39 39 31.2 46.8 39 2.6 40.35 41.1
8 

42.3
2 

37 

13 35 35 28 42 35 2.33 36.21 36.9
6 

37.9
8 

32 

14 26 26 20.8 31.2 26 1.73 26.90 27.4
5 

28.2
1 

30 

15 22 22 17.6 26.4 22 1.46 22.76 23.2
3 

23.8
7 

21 

16 103 103 82.4 123.
6 

103 6.86 106.5 108.
7 

111.
7 

112 

17 40 40 32 48 40 2.66 41.38 42.2
4 

43.4
1 

39 

18 50 50 40 60 50 3.33 51.73 52.8 54.2
6 

52 

19 76 76 60.8 91.2 76 5.06 78.63 80.2
5 

82.4
8 

80 

20 51 51 40.8 61.2 51 3.4 52.76 53.8
5 

55.3
5 

56 

21 34 34 27.2 40.8 34 2.26 35.17 35.9
0 

36.9
0 

35 

 
The first column of the Table 8 is the project number, the second column is of the estimated 

time as given in the dataset, the third column is the estimated time which we have assumed as 
most likely for our expected value. The fourth and the fifth columns are for the best and the 
worst case which are calculated by adding and subtracting 20% from the estimated values 
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respectively. The sixth column is the expected time generated through the expected value 
formula given in equation 1. The seventh is the standard deviation calculated by dividing the 
difference of worst and the best case with 6. Eighth, ninth and tenth columns are the estimated 
time of the project incorporating the standard deviation on 70, 80 and 90 percent confidence 
levels respectively. The eleventh which is the last column is the actual time that was spent on 
the project.  

In the next section we calculate the Magnitude of Relative Error for all of our estimated 
cases and provide our understanding of the results. The Mean Magnitude of Relative Error 
(MMRE) is also calculated.  

4. Results and Discussion 
This section shows the Magnitude of Relative error (MRE) of 4 cases, first for the previous 

estimated time value from the dataset, then the MRE for our estimates with 70, 80 and 90% 
confidence levels which are shown in Table 9. The MRE was calculated using the formula 
given in Equation (2). 
  

𝑀𝑀𝑀𝑀𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 𝐸𝐸 [𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝑡𝑡𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝑡𝑡𝐵𝐵−𝐸𝐸𝐵𝐵𝐵𝐵𝑡𝑡𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝑡𝑡𝐵𝐵
𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝑡𝑡𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝑡𝑡𝐵𝐵

]  (2) 
 

  Table 9. MRE of actual dataset using the actual time of project completion, 70%, 80% and 90% 
confidence time 

No. MRE 
(Original 
Dataset) 

MRE with 
70% 

confidence 

MRE with 
80% 

confidence 

MRE with 
90% 

confidence 
1 7.93 4.74 2.78 0.08 
2 11.95 8.90 7.02 4.44 
3 7.14 3.92 1.94 0.78 
4 1.16 4.66 6.82 9.79 
5 9.37 6.23 4.30 1.64 
6 4.39 8.01 10.24 13.30 
7 17.14 14.27 12.50 10.07 
8 9.67 6.54 4.61 1.96 
9 2.77 0.59 2.66 5.51 
10 6.45 10.14 12.41 15.53 
11 8.88 5.73 3.78 1.11 
12 5.40 9.05 11.30 14.40 
13 9.37 13.16 15.50 18.70 
14 13.33 10.32 8.48 5.93 
15 4.76 8.39 10.62 13.70 
16 8.03 4.84 2.88 0.188 
17 2.56 6.11 8.30 11.31 
18 3.84 0.51 1.53 4.35 
19 5 1.70 0.32 3.10 
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20 8.92 5.77 3.82 1.15 
21 2.85 0.51 2.58 5.43 

 
Table 9 shows that from the total 21 cases, the MRE has improved in 14 cases when 

standard deviation was applied. The MMRE (Mean Magnitude of Relative Error) has also 
improved in all the three cases with 70%, 80% and 90% confidence levels. This is shown in 
Table 10.  
 
Table 10. MMRE of actual dataset using the actual time of project completion and MMRE with 70%, 

80% and 90% confidence levels 
MMRE 

(Original 
Dataset) 

MMRE with 
70% 

confidence 

MMRE with 
80% 

confidence 

MMRE with 
90% 

confidence 
7.19 6.38 6.40 6.78 

 
The Fig. 2 shows the MRE of all the kinds of data, the first graph is of the actual MRE from 

the dataset, and the next three graphs show the MRE of the actual dataset with the MRE of our 
90, 80 and 70% confidence cases respectively.  
 

 
 

Fig. 2. MRE graphs of the original dataset and three standard deviation based confident levels 
 

It is interesting to observe that when the original MRE is less, means it is 5% or less then 
the MRE for the standard deviation has gone up and not improved the results. We believe that 
this dataset is very good in terms of estimation results as the difference between estimated 
value and actual value in terms of time is very less. This can be known from the fact that the 
highest MRE in the 21 projects’ dataset is 11 percent. Although in estimation it is believed 
that 25% difference in actual and estimated in also considered good[1], so we can say that this 
dataset is exceptionally good. Considering the improvement is 14 cases in overall 21 cases we 
believe that our standard deviation-based technique will help in achieving more accurate 
estimates in other datasets where the MRE is ten percent or more, so we expect better results 
in all estimation cases.  
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5. Conclusion and Future Direction 
In this paper, we showed a case of analogy-based estimation on a software system; in 

order to improve the estimate, we applied simple standard deviation on the estimate. We 
conclude that calculating estimates with standard deviation will give more confidence while 
committing completion time to the customers. To strengthen our case, we used the same 
standard deviation methodology on an available dataset of agile software. Out of 21 instances 
where the actual time and estimated time was already given in the dataset our methodology 
helped in improving 14 cases. This means an improvement in 66% of the cases which we 
showed through the calculation of magnitude of relative error. We conclude that standard 
deviation should always be applied to the estimates that are generated in order to gain more 
confidence and better chances of accuracy.  

In future we plan to use standard deviation methodology on other datasets also; this can also 
be applied to cases where software effort is calculated by using other techniques rather than 
analogy-based estimation.  
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