• Title/Summary/Keyword: Accelerated lifetime

Search Result 200, Processing Time 0.026 seconds

Design of Accelerated Life Testing for Reliability Assurance of Electrical Apparatus (전기기기 신뢰성 보증을 위한 가속수명시험 설계)

  • Kim, M.K.;Lee, J.G.;Kim, I.S.;Jeong, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1498-1499
    • /
    • 2007
  • In general, ALT can be used to expect the lifetime of electric machines and accelerated stress testing(AST) is used to evaluate the residual life of insulation system. In this paper, a method to design the accelerated life testing(ALT) for reliability qualification of electrical apparatus is represented.

  • PDF

The least squares estimation for failure step-stress accelerated life tests

  • Kim, In-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.813-818
    • /
    • 2010
  • The least squares estimation method for model parameters under failure step-stress accelerated life tests is studied and a numerical example will be given to illustrate the proposed inferential procedures under the compound linear plans proposed as an alternative to the optimal quadratic plan, assuming that the exponential distribution with a quadratic relationship between stress and log-mean lifetime. The proposed compound linear plan for constant stress accelerated life tests and 4:2:1 plan are compared for various situations. Even though the compound linear plan was proposed under constant stress accelerated life tests, we found that this plan did well relatively in failure step-stress accelerated life tests.

A class of accelerated sequential procedures with applications to estimation problems for some distributions useful in reliability theory

  • Joshi, Neeraj;Bapat, Sudeep R.;Shukla, Ashish Kumar
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • This paper deals with developing a general class of accelerated sequential procedures and obtaining the associated second-order approximations for the expected sample size and 'regret' (difference between the risks of the proposed accelerated sequential procedure and the optimum fixed sample size procedure) function. We establish that the estimation problems based on various lifetime distributions can be tackled with the help of the proposed class of accelerated sequential procedures. Extensive simulation analysis is presented in support of the accuracy of our proposed methodology using the Pareto distribution and a real data set on carbon fibers is also analyzed to demonstrate the practical utility. We also provide the brief details of some other inferential problems which can be seen as the applications of the proposed class of accelerated sequential procedures.

Lifetime Assessment for Oil-Paper Insulation using Thermal and Electrical Multiple Degradation

  • Kim, Jeongtae;Kim, Woobin;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.840-845
    • /
    • 2017
  • In this paper, in order to investigate the lifetime of oil-paper insulation, specimens were artificially aged with thermal and electrical multiple stresses. Accelerated ageing factors and equivalent operating years for each aging temperatures were derived from results of tensile strengths for the aged paper specimens. Also, the evaluation for the multi-stress aged specimens were carried out through the measurement of impulse breakdown voltage at high temperature of $85^{\circ}C$. The lifetimes of the oil-paper insulations were calculated with the value of 66.7 for 1.0 mm thickness specimens and 69.7 for 1.25 mm thickness specimens throughout the analysis of impulse BD voltages using equivalent operating years, which means that dielectric strengths would not be severely decreased until the mechanical lifetime limit. Therefore, for the lifetime evaluation of the oil-paper insulation, thermal aging would be considered as a dominant factor whereas electrical degradation would be less effective.

The Effect of MgO Rate Preparing Conditions and Xe Partial Pressure on the Relative Life time of an AC Plasma Display Panel

  • Park, Cha-Soo;Park, Min-Seok;Park, Joon-Young;Kim, Dong-Hyun;Lee, Ho-Jun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.35-42
    • /
    • 2003
  • This paper proposes a relative lifetime test method of MgO thin film. The suggested test conditions are 5$0^{\circ}C$, 400Torr, 20% over-voltage and 300KHz. The relative lifetime of MgO thin film is significantly affected by the MgO preparing conditions and Xe partial pressure. As result, the lifetime of the AC plasma display panel (PDP) is increased with an MgO thickness of 2000$\AA$ to 8000$\AA$ but is saturated over 5000$\AA$ (up to 9000 $\AA$). In addition, as Xe partial pressure increases, AC PDP lifetime increases.

Multistress Life Models of Epoxy Encapsulated Magnet wire under High Frequency Pulsating Voltage

  • Grzybowski, S.;Feilat, E.A.;Knight, P.
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.1-4
    • /
    • 2003
  • This paper presents an attempt to develop probabilistic multistress life models to evaluate the lifetime characteristics of epoxy-encapsulated magnet wire with heavy build polyurethane enamel. A set of accelerated life tests were conducted over a wide range of pulsating voltages, temperatures, and frequencies. Samples of fine gauge twisted pairs of the encapsulated magnet wire were tested us-ing a pulse endurance dielectric test system. An electrical-thermal lifetime function was combined with the Weibull distribution of lifetimes. The parameters of the combined Weibull-electrical-thermal model were estimated using maximum likelihood estimation. Likewise, a generalized electrical-thermal-frequency life model was also developed. The parameters of this new model were estimated using multiple linear regression technique. It was found in this paper that lifetime estimates of the two proposed probabilistic multistress life models are good enough. This suggests the suitability of using the general electrical-thermal-frequency model to estimate the lifetime of the encapsulated magnet wire over a wide range of voltages, temperatures and pulsating frequencies.

Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime (전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조)

  • Kim, Da-eun;Yoo, Jaemin;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

Study for comparison of storage lifetimes estimation between constant and time-variant variance of degradation data (열화데이터의 등분산 가정에 따른 저장수명예측 비교 연구)

  • Back, Seungjun;Son, Youngkap;Park, Sanghyun;Lee, Munho;Kang, Insik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.154-156
    • /
    • 2017
  • Constant variance of degradation data over time has been generally assumed to estimate storage lifetime using destructive, accelerated degradation data over time. However, performance data of ammunitions deteriorate over time, and the standard deviation would tend to increase over time. This paper shows storage lifetime comparison results for constant variance and time-variant variance assumptions of degradation data over time, and proposes that time-variant variance assumption should be considered to increase accuracy in lifetime estimation.

  • PDF

Thermal Analysis and Equivalent Lifetime Prediction of Insulation Material for Nuclear Power Cable (원전 케이블용 절연재료의 열분석과 등가수명)

  • Kim, Ji-Yeon;Yang, Jong-Suk;Park, Kyeung-Heum;Seong, Baek-Yong;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • The activation energy of a material is an important factor that significantly affects the lifetime and can be used to develop a degradation model. In this study, a thermal analysis was carried out to evaluate and collect quantitative data on the degradation of insulation materials like EPR and CSP used for nuclear power plant cables. The activation energy was determined from the relationship between log ${\beta}$ and 1/T based on the Flynn.Wall.Ozawa method, by a TGA test. The activation energy was also derived from the relationship between ln(t) and 1/T based on isothermal analysis, by an OIT test. The activation energy of EPR derived from thermal analysis was used to calculate the accelerated aging time corresponding to the number of years of use, employing the Arrhenius equation, and determine the elongation corresponding to the accelerated aging time.