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Abstract

The least squares estimation method for model parameters under failure step-stress
accelerated life tests is studied and a numerical example will be given to illustrate the
proposed inferential procedures under the compound linear plans proposed as an alter-
native to the optimal quadratic plan, assuming that the exponential distribution with a
quadratic relationship between stress and log-mean lifetime. The proposed compound
linear plan for constant stress accelerated life tests and 4:2:1 plan are compared for
various situations. Even though the compound linear plan was proposed under con-
stant stress accelerated life tests, we found that this plan did well relatively in failure
step-stress accelerated life tests.

Keywords: Compound Linear plan, exponential distribution, failure step-stress accel-
erated life tests, transformed least squares estimates.

1. Introduction

Accelerated life tests (ALTs) use to get informations on the life distribution of test unit
quickly. The various accelerated life testings are used to avoid this problem. Meeker and Nel-
son (1975) and Meeker (1984) suggested the design for Type I censored constant-stress ALTs.
Nelson and Miller (1983), Bai et al . (1989) obtained the stress change time which minimizes
the asymptotic variance of maximum likelihood estimate of the log scale parameter at the use
stress level. Bai and Chung (1992) compared the performances of step-stress and constant-
stress partially ALTs by the tampered random variable (TFR) model proposed DeGroot
and Goel (1979). Khamis and Higgins (1996) evaluated compound linear plan under three
step-stress ALTs. Kahn (1979) discussed least square estimation for constant-stress ALTs.
Teng and Yeo (2002) proposed the a transformed least squares (TLS) approach for analyzing
failure step-stress ALTs. Kim (2006) proposed the compound linear plan and compared the
efficiencies with other compromise plans. Moon and Kim (2006) studied confidence inter-
val estimation of the two-parameter exponential distribution under three step-stress ALTs.
Moon (2008) obtained the optimal plans based on grouped and Type I censored data for
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three step-stress ALTs. Moon and Park (2009) also studied optimal plans based on periodic
inspection with Type I censoring.

In this paper, we study a TLS approach for a log-quadratic life stress relationship under
failure step-stress ALTs. Also we apply compound linear plan proposed by Kim (2006) under
3-level constant stress ALTs to three failure step-stress ALTs and show the proposed com-
pound linear plan useful in this case. In Section 2, we describe some necessary assumptions
and present the TLS estimates (TLSE) of regression parameters. The proposed inferential
procedures and the efficiencies to compare the compound linear plan with the 4:2:1 plan are
illustrated in Section 3.

2. Transformed least squares estimates

Let ni be the number of failed units at the stress level si, i = 1, 2, · · · ,m and Ti,j be the
j-th observation at stress level si, j = 1, 2, · · · , ni. The life distribution of the test unit for
any stress is assumed to be exponential with mean life θi at stress level si, i = 1, 2, · · · ,m.

Under the failure-step stress ALTs, suppose that all n test units are initially placed at the
lowest stress level s1, and the number of failed units ni, i = 1, 2, · · · ,m at each stress level
are preassigned. If n1 failures are observed at stress level s1, then the stress is changed to
s2 at T1,n1 and the test runs until n2 failures are observed. After n2 units have failed at
stress level s2, the stress is changed to s3 at T2,n2, and test process is terminated after nm
failures are occurred.

Suppose that there are m stress levels with s1 < s2 < · · · < sm. In the presentation of
our results and without loss of generality, we use the standardized stress levels given by

xi =
si − s0

sm − s0
, i = 1, 2, · · · ,m,

where s0 is the usual stress. The log (mean lifetime) (log θi) at stress xi is assumed to be
given by

log θi = β0 + β1xi + β2x
2
i , i = 1, 2, · · · ,m, (2.1)

where β0, β1 and β2 are unknown parameters.

Lemma 1. Let T(1), T(2), · · · , T(n) be the ordered observations of a size n random sample
from the exponential distribution with mean θ. Let T(0) = 0. Then for i = 1, 2, · · · , n,

Zi = (n− i+ 1)(T(i) − T(i−1))

are independent and identically distributed as an exponential distribution with mean θ.

Lemma 2. Let Z have an exponential distribution with mean θ. Then logZ has an
extreme-value distribution with location parameter log θ and scale parameter 1. Then the
mean and variance of logZ are log θ − 0.5772 and 1.2832, respectively.

Proof : Proofs of Lemma 1 and Lemma 2 are in Lawless (1982) and many other books. �
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Let T1,0 = 0, Ti,0 = Ti−1,ni−1
for i = 1, 2, · · · ,m. Let for i = 2, 3, · · · ,m,

Z1,1 = nT1,1, Z1,2 = (n− 1)(T1,2 − T1,1), · · · , Z1,n1
= (n− n1 − 1)(T1,n1

− T1,n1−1), · · ·

Zi,1 =

(
n−

i−1∑
k=1

nk

)(
Ti,1 − Ti−1,ni−1

)
, Zi,2 =

(
n−

i−1∑
k=1

nk − 1

)
(Ti,2 − Ti,1) , · · · ,

Zi,ni
=

(
n−

i∑
k=1

nk + 1

)(
Ti,ni

− Ti,ni−1

)
.

Then the time differences between two consecutive failures

Zi,j = (n− [

i−1∑
k=1

nk + j] + 1)(Ti,j − Ti,j−1) (2.2)

for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni are independent and identically distributed as an
exponential distribution with mean θi by Lemma 1. The logZi,j has therefore extreme-value
distribution by Lemma 2.

Under the assumption that log θi = β0 + β1xi + β2x
2
i , the regression model is

Wi,j = log θi + ei,j ,

Wi,j = logZi,j + 0.5772,

where ei,j are independent extreme-value random variable with mean 0 and variance 1.2832.
By LS estimation, the TLSE of βi, i = 0, 1, 2, are given by

β̂ =
(
X
′
X
)−1

X
′
W =

 n
∑
nixi

∑
nix

2
i∑

nixi
∑
nix

2
i

∑
nix

3
i∑

nix
2
i

∑
nix

3
i

∑
nix

4
i

−1 ∑
i,j Wi,j∑

i,j xiWi,j∑
i,j x

2
iWi,j

, (2.3)

where

X =

 1, · · · , 1 · · · · · · 1
x1, · · · , x1 · · · · · · xm
x21, · · · , x21 · · · · · · x2m


′

, W =
(
W1,1, · · · ,W1,n1 · · · · · ·Wm,1, · · · ,Wm,nm

)′
.

The TLS approach makes much easier to compute the estimates of β0, β1, β2 compared
to using maximum likelihood methods and we can also obtain the closed-form estimates of
β0, β1, β2 by this approach.

In particular, the asymptotic variance of the TLSE of logarithm of the mean lifetime,
log θ0, at use stress level x0 is aV ar(log θ̂0) = aV ar(β̂0), where aV ar(β̂0) is 1.2832 times the

first element of the matrix
(
X
′
X
)−1

, that is,

aV ar(log θ̂0) =
1.2832

n−
a21a4 + a32 − 2a1a2a3

a2a4 − a23

(2.4)
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with al =
∑m

i=1 nix
l
i, l = 1, 2, 3, 4.

To find the optimal stress change times Ti,ni
, i = 1, 2, · · · ,m for failure step-stress ALTs

minimizing aV ar(log θ̂0) in (2.4) is to find the number of optimal failures ni at each stress
level xi, subject to

∑m
i=1 ni = n, which minimizes

a21a4 + a32 − 2a1a2a3

a2a4 − a23
(2.5)

By differentiating (2.5) with respect to ni, i = 1, 2, · · · ,m and equating to zero, the
number of optimal failures n∗i at stress level xi can be found.

3. Numerical example

The 40 simulated failure times from failure three step-stress ALT is given in Table 3.1 to
illustrate TLSE of β0, β1 and β2, based on three stress level x1 = 0.3, x2 = 0.65, x3 = 1 and
the log-quadratic relationship, log θi = 1 − 2xi − 5x2i , i = 1, 2, 3 in (2.1).

The numbers of failures n1 and n2 at stress level x1 and x2 are solutions in (3.1).

f1(n1, n2) = −
1

(a2a4 − a23)
2((x41 − x43)(a1a3 − a22)2 − 2(x31 − x33)(a1a3 − a22)(a1a4 − a2a3)

+(x21 − x23)(2(a1a3 − a22)(a2a4 − a23) + (a1a4 − a2a3)2)

−2(x1 − x3)(a2a4 − a23)(a1a4 − a2a3)). (3.1)

f2(n1, n2) = −
1

(a2a4 − a23)
2((x42 − x43)(a1a3 − a22)2 − 2(x32 − x33)(a1a3 − a22)(a1a4 − a2a3)

+(x22 − x23)(2(a1a3 − a22)(a2a4 − a23) + (a1a4 − a2a3)2)

−2(x2 − x3)(a2a4 − a23)(a1a4 − a2a3)).

But, finding the numbers of optimal failures n1 and n2 is very troublesome. So, the com-
pound linear plan proposed by Kim (2006) is used and all failures are generated according
to TFR model. We showed the compound linear plan was nearly as good as the optimum
quadratic plan. The numbers of failures at each stress level by the compound linear plan
are n1 = 17, n2 = 15 and n3 = 8. On the other hand, n1 = 18, n2 = 16 and n3 = 6 by
optimal quadratic plan and n1 = 22, n2 = 11 and n3 = 7 by the 4:2:1 plan.

The computed Zi,j in (2.2) from 40 failure times are listed in Table 3.2. By these Zi,j and

(2.3), the TLSE of β0, β1 and β2 are β̂0 = 1.087, β̂1 = −2.489 and β̂2 = −5.204, respectively.
The 4:2:1 plan by Khamis and Higgins (1996) for three step-stress ALTs did well relatively

over a range of test situations. But we showed the compound linear plan did better than
4:2:1 plan for constant stress ALTs by their efficiencies for various x1 and x2. We examine
that the compound linear plan do well relatively compared to the 4:2:1 plan in failure step-
stress accelerated life tests various x1 and x2 by ratio = aV arc/aV ark, ratio of aV ar(log θ̂0)
asymptotic variances of the TLSE of logarithm of the mean lifetime at use stress level x0 and
the results are given in Table 3.3, where aV arc and aV ark indicate variances aV ar(log θ̂0)
by the compound linear plan and the 4:2:1 plan, respectively.
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Table 3.1 40 simulated failure times Ti,j

i xi ni Ti,j

1 0.3 17 0.04567 0.05213 0.06533 0.06816 0.09131 0.10500
0.10586 0.16113 0.16818 0.23991 0.24551 0.26459
0.30268 0.33121 0.34009 0.42073 0.44885

2 0.65 15 0.45454 0.45594 0.4606 0.46086 0.46964 0.48216
0.48450 0.48567 0.48628 0.48756 0.48943 0.48965
0.49358 0.50258 0.51674

3 1 8 0.51678 0.51819 0.51819 0.51823 0.51934 0.51964
0.51988 0.52173

Table 3.2 The computed for TLS estimation Zi,j

i xi ni Zi,j

1 0.3 17 1.82674 0.25191 0.50186 0.10468 0.83317 0.47917
0.02946 1.82392 0.22557 2.22348 0.16813 0.55317
1.06657 0.77041 0.23074 2.01593 0.67492

2 0.65 15 0.13083 0.03088 0.09797 0.00507 0.16688 0.22531
0.03977 0.01875 0.00916 0.01796 0.0243 0.0026
0.04321 0.09002 0.12742

3 1 8 0.00034 0.00985 0.00005 0.00019 0.00442 0.0009
0.00049 0.00185

From these results, we can see that when the stress x2 is less than 0.6, the 4:2:1 plan do
better slightly than the compound linear plan, regardless of x1 and when the stress x1 is
less than 0.2, the 4:2:1 plan is better for the larger stress x2, but the proposed compound
linear plan do better relatively than the 4:2:1 plan for over most testing situations.

Table 3.3 The ratios of variances

x1 x2 ratio x1 x2 ratio
.55 1.01758 .55 1.02781

.20 .60 .97112 .35 .60 .95330
.65 .96756 .65 .93262
.70 .99964 .70 .89047
.75 1.12962 .75 .88219
.55 1.01286 .55 1.04943

.25 .60 .95643 .40 .60 .96661
.65 .94644 .65 .94146
.70 .93335 .70 .87748
.75 1.01091 .75 .85149
.55 1.01593 .55 1.04281

.30 .60 .97447 .45 .60 .99120
.65 .93449 .65 .96213
.70 .90554 .70 .88159
.75 .93296 .75 .84172
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