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Abstract
This paper deals with developing a general class of accelerated sequential procedures and obtaining the

associated second-order approximations for the expected sample size and ‘regret’ (difference between the risks
of the proposed accelerated sequential procedure and the optimum fixed sample size procedure) function. We
establish that the estimation problems based on various lifetime distributions can be tackled with the help of the
proposed class of accelerated sequential procedures. Extensive simulation analysis is presented in support of the
accuracy of our proposed methodology using the Pareto distribution and a real data set on carbon fibers is also
analyzed to demonstrate the practical utility. We also provide the brief details of some other inferential problems
which can be seen as the applications of the proposed class of accelerated sequential procedures.
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1. Introduction

Dantzig (1940) proved the non-existence of fixed sample size procedures to construct the confidence
interval of preassigned width and coverage probability for a normal mean in the ignorance of any
knowledge about the variance. In order to deal with this estimation problem, Stein (1945) proposed a
two-stage procedure. Starr (1966) and Woodroofe (1977) adopted purely sequential procedures for the
same estimation problem. Two-stage and purely sequential procedures for estimating the parameters
involved with different probabilistic models have been developed and studied by various authors. For
a brief review, one may refer to the monographs of Ghosh et al. (1997) and Mukhopadhyay and de
Silva (2009).

Hall (1983) deduced that both the two-stage and purely sequential estimation procedures have
some drawbacks. On one side, two-stage procedure is easy to operate as it requires only two stages and
achieves the exact coverage probability but the difference between the average sample number and the
‘optimal’ fixed-sample size does not remain asymptotically bounded. As a result, two-stage procedure
leads us to considerable oversampling. On the other side, purely sequential procedure is complicated
in nature to apply and achieves the target value of coverage probability only asymptotically. Hall
(1983) developed a sampling scheme in order to construct fixed-width confidence interval for a normal
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mean, which could combine the advantages of two-stage and sequential procedures. He named it
as an “accelerated” sequential procedure. In his procedure, sampling stages can be reduced by a
predetermined factor at the cost of finite number of observations with very nearly the desired coverage
and difference between the average sample number and ‘optimal’ fixed sample size remains bounded.

Mukhopadhyay and Solanky (1991) developed the second-order asymptotic theory for accelerated
sequential stopping rules and provided several interesting applications of their general setup. They
have also provided solutions to various interesting ranking and selection problems by using the ac-
celerated sequential sampling design (Mukhopadhyay and Solanky, 1992a,b, 1993). Mukhopadhyay
(1996) provided an alternative formulation of accelerated sequential procedures having applications
to various parametric and non parametric estimation problems. Datta and Mukhopadhyay (1998)
proposed the accelerated sequential procedures in partitioning a set of normal populations. Chat-
topadhyay (2000) and Chattopadhyay and Sengupta (2006) have developed accelerated sequential
procedures for the parameters of exponential and normal populations under asymmetric loss struc-
tures. Recently, Hu (2021) provided an improved accelerated sequential procedure to tackle the prob-
lem of fixed-width confidence interval estimation of an unknown normal mean in the absence of any
knowledge about the variance. Similar procedures to deal with some other estimation problems have
been developed and studied by numerous authors. To cite a few, one may refer to Son and Hamdy
(1990), Hamdy and Son (1991), Chaturvedi and Tomer (2003), Chaturvedi et al. (2019a,b), Joshi and
Bapat (2020a), Mukhopadhyay and Khariton (2020), Zhuang and Bhattacharjee (2021), Joshi et al.
(2021) and the references therein.

Taking into consideration the relationship among the ‘optimal’ fixed sample size solutions of es-
timation and ranking and selection problems related to normal populations, Chaturvedi and Gupta
(1994) developed a class of sequential procedures. The confidence interval and ranking and selection
problems were linked with the bounded risk point estimation problems under zero-one loss func-
tion exploiting the common functional form of the risks associated with these problems and second-
order approximations were obtained for the ‘regret’ (difference between the risks of optimal and fixed
sample size procedures). It was shown that the results obtained under this general set-up provided
second-order approximations to estimation and ranking and selection problems and, as such, no sep-
arate dealing was required.

In the present paper, motivated by the work of Chaturvedi and Gupta (1994), a general class
of accelerated sequential procedures is developed. Second-order approximations are obtained for
the expected sample size and ‘regret’ respectively. By means of examples, it is established that the
estimation problems based on various probability distributions can be handled with the help of the
proposed class of accelerated sequential procedures. Note that the work of Chaturvedi and Gupta
(1994) covers various inferential problems only for normal distribution whereas our present paper
provides a more generalized approach covering the wide range of problems (the problems based on
normal distribution are one among them). Further, in the present work, we propose a general class
of accelerated sequential procedures which reduces the number of sampling operations substantially,
whereas Chaturvedi and Gupta (1994) dealt with a class of sequential procedures under the normal
distribution case.

The rest of the paper is organized as follows. In Section 2, we give the set-up of the estimation
problem and establish the failure of fixed sample size procedure to deal with ‘it’. In Section 3, we
propose the accelerated sequential procedure to handle this estimation problem. Section 4 contains
some important results associated with the proposed accelerated sequential procedure. In Section
5, we derive the associated second-order approximations. Section 6 deals with applications of the
proposed methodology to tackle the inferential problems related to various distributions useful in



A general class of accelerated sequential procedures 565

reliability theory. Section 7 presents extensive simulation and real data analyses, to complement our
proposed procedures. Finally, in Section 8, we provide brief set of conclusions and future scope of
the proposed work.

2. The estimation problem

We know that the ‘optimal’ fixed sample size required by a ‘given precision problem’ often takes the
form,

n∗ = aθb, (2.1)

where θ(> 0) is an unknown scalar parameter, a and b are known positive numbers and ‘a’ may be
allowed to approach infinity. Given a random sample X1,X2, . . . ,Xn of size n(≥ t +1) from a t-variate
absolutely continuous population, let θ̂n = θ̂(X1,X2, . . . ,Xn) be the estimator of θ such that, for all
n ≥ s + 1,

q(n − s)
θ̂n

θ
=

n−s∑
j=1

Z(q)
j , (2.2)

where q and s are positive integers with Z(q)
j following χ2-distribution with q degrees of freedom. We

now provide a fundamental problem as an example, to gauge as to how the ‘optimal’ sample size
takes the form equation (2.1) and how the assumption equation (2.2) is useful in obtaining the desired
asymptotic results.

Suppose we are interested in estimating the mean µ(−∞ < µ < ∞) of a normal population
N(µ, σ2), when the variance σ2(0 < σ < ∞) remains unknown. Given two preassigned numbers
d(> 0) and 0 < α < 1, we wish to construct a confidence interval J = [µ − d, µ + d] of length 2d
for µ such that, Pµ,σ(µ ∈ J) > 1 − α for all µ, σ. Since there does not exist any fixed-sample size
methodology to solve this problem, we proceed as follows. Starting with a sequence of independent
observations X1, X2, . . . , Xn from N(µ, σ2), denote X̄n = n−1 ∑n

i=1 Xi and S 2
n = (n− 1)−1 ∑n

i=1(Xi − X̄n)2

as the sample mean and sample variance, respectively. We propose the interval Jn = [X̄n−d, X̄n +d] to
estimate µ which satisfies Pµ,σ(µ ∈ Jn) > 1−α. The confidence coefficient can be obtained as follows

Pµ,σ (µ ∈ Jn) = P
{
| X̄n − µ |≤ d

}
= 2Φ

( √
nd
σ

)
− 1,

where Φ(·) is the distribution function of a standard normal variate. Since, the associated confidence
coefficient must be 1 − α, we can write

2Φ

( √
nd
σ

)
− 1 ≥ 1 − α = 2Φ(z) − 1,

where z is the upper 50% point of a standard normal distribution. Now, the optimal fixed sample size
n∗ can be obtained as follows

n ≥ z2σ
2

d2 = n∗

It is obvious that the above optimal fixed sample size takes the form equation (2.1) with a = z2/d2, b =

1 and θ = σ2. Moreover, we have

(n − 1)S 2
n

σ2 =

n∑
i=1

Z j
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where Z j follows χ2-distribution with 1 degree of freedom. We can see that this result takes the form
in equation (2.2) with q = 1, s = 1, θ̂n = S 2

n and θ = σ2.
In a similar manner, one can observe the assumptions equations (2.1)–(2.2) for several other es-

timation problems. Obviously, the values of a, b, q, s, θ̂n and θ would be different for each estimation
problem. At this point, we leave out many such examples for brevity alone. However, we will discuss
some specific problems in Section 6.

Coming back to equation (2.1), since θ is unknown, no fixed sample size procedure provides
solution to the problem and hence we adopt the following accelerated sequential procedure to deal
with it.

3. Accelerated sequential procedure

Taking m ≥ max(s + 1, t + 1) be the initial sample size, where, as in Hall (1983), m is chosen to satisfy
m = o(a−1) as a → ∞ and lima→∞ sup(m/n∗) < 1. Let η ∈ (0, 1) be specified. We start sampling
sequentially with the stopping time L defined by,

L = inf
{
n ≥ m; n ≥ ηaθ̂b

n

}
. (3.1)

Based on these L observations, we compute θ̂L. Then, denoting by buc− the largest integer smaller
than u, we jump ahead and take N − L observations, where,

N = max
{
L,

⌊
aθ̂b

L
⌋

+ 1
}
. (3.2)

The stopping rule N estimates n∗ from equation (2.1). Based on these N observations, we propose
θ̂N as the estimator of θ. It is worth mentioning here that, we are using a purely sequential strategy
(which takes observations one by one until the process terminates) only to determine a preliminary
sample and then jumping ahead to take a batch of remaining observations in one step. So, somehow
we are accelerating our sequential procedure and that’s why this process is named as an “acceler-
ated” sequential procedure. Suppose that the risk associated with the accelerated sequential procedure
equations (3.1)–(3.2) is of the form,

RN(a) = E
[
g
( N
n∗

)]
, (3.3)

where g(x) is a continuous, twice differentiable function and for the random variable ‘U’ defined by
| U − 1 |≤| (N/n∗) − 1 |,

g′′(U) ≤ k1a−u [
k2Uv + k3U−w] , (3.4)

where u ∈ [0,∞), v ∈ (−∞,∞),w ∈ [0,∞) and | ki |< ∞, i = 1, 2, 3.
Obviously, the ‘optimal’ fixed sample size risk can be obtained by putting N = n∗ in equation

(3.3) and is given by

Rn∗ (a) = g(1), (3.5)

and the ‘regret’ associated with the accelerated sequential procedure equations (3.1)–(3.2) is defined
by

Rg(a) = RN(a) − Rn∗ (a). (3.6)
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4. Some important results

In this section, we provide some important lemmas associated with the accelerated sequential proce-
dure equations (3.1)–(3.2). We will use these lemmas to obtain the second-order approximations in
Section 5.

Lemma 1. For the class of accelerated sequential procedures equations (3.1)–(3.2), we have,

P(N < ∞) = 1, (4.1)
lim
a→∞

N = ∞, (4.2)

lim
a→∞

( N
n∗

)
= 1. (4.3)

Proof: To prove the result equation (4.1), first let us write P(N = ∞) = limn→∞ P(N > n). Note
that the event {N > n} means, we did not stop with n observations. Thus, at the stage when we have
N(≥ m) observations, we must have all the events k < ηaθ̂k satisfied, where, k = m, . . . , n. Thus, we
can write,

P(N > n) = P
{
k < ηaθ̂k, k = m, . . . , n

}
≤ P

{
n < ηaθ̂b

n

}
= P

θ̂n − θ >

(
n
ηa

) 1
b

− θ

 .
We may consider ‘n’ sufficiently large, i.e., when (n/ηa)1/b > θ, using Markov’s inequality, we obtain,

P(N > n) ≤ P

| θ̂n − θ |>

(
n
ηa

) 1
b

− θ


≤ E

{
| θ̂n − θ |

2
} 

(
n
ηa

) 1
b

− θ


−2

= Var(θ̂n)


(

n
ηa

) 1
b

− θ


−2

. (4.4)

Since from equation (2.2), we have,

θ̂n ∼
θ

q(n − s)
χ2

q(n−s),

⇒ Var(θ̂n) ≡
2θ2

q(n − s)
,

we can rewrite equation (4.4) as,

P(N > n) =
2θ2

q(n − s)


(

n
ηa

) 1
b

− θ


−2

.
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Thus, we have,

lim
n→∞

P(N > n) ≤ lim
n→∞

 2θ2

q(n − s)


(

n
ηa

) 1
b

− θ


−2 = 0,

and equation (4.1) follows.
Equation (4.2) is an immediate consequence of the definition of N given in equation (3.2). Further,

from equation (3.1), we observe the inequality(
θ̂L

θ

)b

≤
N
n∗
≤

(
θ̂L

θ

)b

+
LI(N = L) + 1

n∗
,

which can further be written as (
θ̂L

θ

)b

≤
N
n∗
≤

(
θ̂L

θ

)b

+ O(a−1), (4.5)

where I(E) denotes the indicator function of an event E. Moreover, from equation (2.2) and Kol-
mogorov’s strong law of large numbers (Bhat, 1981), θ̂L

a.s.
−−→ θ as L→ ∞. Equation (4.3) now follows

from equation (4.5) on taking the limit as a→ ∞. 2

Lemma 2. For 0 < ε < 1, as a→ ∞, we have,

P(N ≤ εn∗) = O
(
a
−q(m−s)

2b

)
. (4.6)

Proof: We have,

P(N ≤ εn∗) ≤ P(L ≤ εn∗)
= P(L = m) + P(m + 1 ≤ L ≤ εn∗). (4.7)

Firstly, we focus on P(L = m). We have,

P(L = m) = P
[
m ≥ ηaθ̂b

m

]
= P

Vm ≤ q(m − s)
(

m
ηn∗

) 1
b


=

[
2

q(m−s)
2 Γ

(
q(m − s)

2

)]−1 ∫ q(m−s)
(

n
ηn∗

) 1
b

0
e−

y
2 y

(
q(m−s)

2

)
−1dy

≤

[
2

q(m−s)
2 Γ

(
q(m − s)

2

)]−1 ∫ q(m−s)
(

n
ηn∗

) 1
b

0
y
(

q(m−s)
2

)
−1dy

=

[
2

q(m−s)
2 Γ

(
q(m − s)

2

)]−1
q(m − s)

(
n
ηn∗

) 1
b


q(m−s)
2

= O
(
a
−q(m−s)

2b

)
. (4.8)
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We focus on P(m + 1 ≤ L ≤ εn∗). Without loss of generality, let us suppose that εn∗ is an integer.
Using the Bernstein-Chernoff inequality, we can write,

P(m + 1 ≤ L ≤ εn∗) ≤
εn∗∑

n=m+1

P

Vn ≤ q(n − s)
(

n
ηn∗

) 1
b


≤

εn∗∑
n=m+1

inf
h>0

P

−hVn ≥ −hq(n − s)
(

n
ηn∗

) 1
b


≤

εn∗∑
n=m+1

inf
h>0

(1 + 2h)−
q(n−s)

2 exp

hq(n − s)
(

n
ηn∗

) 1
b



≤

εn∗∑
n=m+1

(1 + 2h0)−
q(n−s)

2 exp

h0q(n − s)
(

n
ηn∗

) 1
b
 (4.9)

with

h0 =
1
2


(
ηn∗

n

) 1
b

− 1

 . (4.10)

This is positive obviously when n < εn∗. Combining equations (4.9)–(4.10), we obtain,

P(m + 1 ≤ L ≤ εn∗) ≤
εn∗∑

n=m+1

(
ηn∗

n

)− q(n−s)
2 b

exp

−q(n − s)
2

(
n
ηn∗

) 1
b

+
q(n − s)

2


=

εn∗∑
n=m+1

( n
ηn∗

) 1
b

exp

1 −
(

n
ηn∗

) 1
b



q(n−s)
2

(4.11)

We observe that for all n ≤ εn∗, we have (n/ηn∗)1/b < ε1/b = k∗(< 1), say. But xe1−x ↑ x, for 0 < x < 1,
which means max0<a<1 xe1−x must be ae1−a. Now we can rewrite equation (4.11) as,

P(m + 1 ≤ L ≤ εn∗) ≤
εn∗∑

n=m+1

k∗
q(n−m)

2

(
n
ηn∗

) q(m−s)
2 b

exp

1 −
(

n
ηn∗

) 1
b



q(m−s)
2

. (4.12)

Since e1−x ≤ e for all real x > 0, equation (4.12) leads to,

P(m + 1 ≤ L ≤ εn∗) ≤ e
q(m−s)

2

εn∗∑
n=m+1

k∗
q(m−s)

2

(
n
ηn∗

) q(m−s)
2 b

= n∗−
q(m−s)

2 be
q(m−s)

2

εn∗∑
n=m+1

bn. (4.13)

The infinite sum
∑εn∗

n=m+1 bn in equation (4.13) is convergent by the “root” test once we note that
bn

1/n → k, 0 < k < 1, as n→ ∞. Thus, we have,

P(m + 1 ≤ L ≤ εn∗) = O
(
a−

q(m−s)
2 b

)
. (4.14)
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The lemma now follows on making substitutions from equation (4.8) and equation (4.14) in equation
(4.7). 2

Lemma 3. g′′(U) is uniformly integrable for all

m > max
{
s + 2q−1b(v∗ − u), s + 2q−1b(w − u)

}
,

where, for v < 0, v = −v∗, (v∗ > 0).

Proof: On the event ‘N > εn∗’, we have | U −1 |≤| (N/n∗)−1 |≤ 1− ε, i.e., U ≥ 2− ε and U−1 ≤ η−1.
Hence, from equation (3.4)

E[g′′(U)I(N > εn∗)] ≤ Ka−uP(N > εn∗),

which on using equation (4.1) gives that, as a→ ∞

E[g′′(U)I(N > εn∗)] = o(1). (4.15)

Moreover, on the event ‘N ≤ εn∗’, we have, | U − 1 |≤ 1−m/n∗. Thus, U < 2 and U−1 ≤ n∗/m. From
equation (3.4)

E[g′′(U)I(N ≤ εn∗)] ≤ k1a−u[2vk2 + k3

(
n∗

m

)w

]P(N ≤ εn∗), (4.16)

which on applying Lemma 2 gives that

E[g′′(U)I(N ≤ εn∗)] = O
(
a
−u−q(m−s)

2 b
)

+ O
(
a

(w−u)−q(m−s)
2 b

)
,

= o(1), for all m > s + 2bq−1(w − u). (4.17)

Further, when v < 0, say v = −v∗, v∗ > 0, we have from equation (3.4)

E[g′′(U)I(N ≤ εn∗)] ≤ k1a−u

k2

(
n∗

m

)v∗

+ k3

(
n∗

m

)w P(N ≤ εn∗),

= O
(
av∗ −u−q(m−s)

2 b
)

+ O
(
a(w−u)− q(m−s)

2 b
)
,

= o(1), (4.18)

for all m > max{s + 2bq−1(v∗ −u), s + 2bq−1(w−u)}. The lemma now follows on combining equation
(4.15), equation (4.16) and equation (4.18). 2

5. Second-order approximations

In this section, we provide second-order approximations for the expected sample size (theorem 1) and
‘regret’ (theorem 2) associated with the proposed accelerated sequential procedure equation (3.1)–
(3.2).

Theorem 1. For all m > s + 2q−1b, as a→ ∞, we have,

E(N) = n∗ − (ηq)−1b(b + 1) +
1
2

+ o(1), (5.1)

Var(N) = 2(ηq)−1n∗b2 + o(a). (5.2)



A general class of accelerated sequential procedures 571

Proof: Denoting by, ψL = 1 − {aθ̂b
L − baθ̂

b
Lc}, we can write,

E(N) = I + II, (5.3)

where,

I = E
{
L.I

(
L ≥

⌊
aθ̂b

L
⌋

+ 1
)}
,

II = aE
(
θ̂b

L

)
+ E (ψL) . (5.4)

It follows from Hall (1983) that, as a→ ∞, I = o(1). Further, from equation (2.2) one can see that the
distribution of θ̂n is equivalent to θ/q(n − s)χ2

q(n−s), whose Fourier transform becomes,

θ

q(n − s)

(
1

1 − 2iu

)q(n−s)

,

which clearly tends to 0 as u → ∞. Hence, from Tukey (1938) one can get that the fractional part of
aθ̂b

L tends to a Uniform(0, 1) distribution and thus, ψL is also uniform over (0, 1). So, we obtain from
equation (5.3) and equation (5.4) that

E(N) = aE(θ̂b
L) +

1
2

+ o(1). (5.5)

We evaluate E(θ̂b
L). To this end, we write equation (3.1) as,

L = inf

n ≥ m; q(n − s)
θ̂n

θ
≤ q(n − s)

(
n
ηn∗

) 1
b
 ,

= inf

n ≥ m;
n−s∑
j=1

Z j
(q) ≤ q(n − s)

(
n
ηn∗

) 1
b

 .
Let us define another stopping rule L∗ = L − s by,

L∗ = inf

n ≥ m − s;
n∑

j=1

Z j
(q) ≤

qn1+b−1
(1 + sn−1)

1
b

(ηn∗)
1
b

 . (5.6)

Comparing equation (5.6) with equation (1.1) of Woodroofe (1977), we obtain in his notations,

S n =

n∑
j=1

Z(q)
j , α = 1 + b−1, β = b, λ = ηn∗, a =

q
2
,

Ln =
(
1 + sn−1

) 1
b , L0 =

s
b
, µ = q, τ2 = 2q.

It now follows from this theorem 2.4 that, for all m > s + 2q−1b, as a→ ∞,

E(L∗) = ηn∗ + bν − s − bq−1(b + 1) + o(1),
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where the value of ν is given by,

ν =
b
2

[ q
b2 + 2

]
−

∞∑
n=1

n−1E
[
max

(
0, χ2

qn − n
(
1 +

1
b

)
q
)]
.

Since L∗ = L − s, we have,

E(L) = ηn∗ + bν − bq−1(b + 1) + o(1).

Let us consider the difference,

Da = L − ηaθ̂b
L. (5.7)

It follows from Woodroofe (1977) that the mean of the asymptotic distribution of Da is bν. From
equation (5.5) and equation (5.7), we obtain,

ηaE
(
θ̂b

L

)
= ηn∗ − q−1b(b + 1) + o(1),

⇒ aE
(
θ̂b

L

)
= n∗ − (ηq)−1b(b + 1) + o(1). (5.8)

Equation (5.1) follows on combining equation (5.5) and equation (5.8). Let h(L) = |(L−ηn∗)/(ηn∗)1/2|.

It follows from a result of Bhattacharya and Mallik (1973) that h(L)
L
−→ N(0, 2q−1b2) as a → ∞ and

from Theorem 2.3 of Woodroofe (1977), h2(L) is uniformly integrable for all m > s + 2q−1b. Hence,

E
[
h2(L)

]
=

1
2

+ o(1). (5.9)

Using (5.9), we have,

Var(N) = η−2Var(L)

= η−2
[
ηn∗

(
2q−1b2 + o(1)

)]
,

and equation (5.2) holds. Proof of theorem 1 is now complete. 2

Theorem 2. For all m > max{s + 2bq−1, t, s + 2bq−1(v∗ − u), s + 2bq−1(w − u)}, as a → ∞, we
have,

Rg(a) = n∗−1
[{
−(ηq)−1b(b + 1) +

1
2

}
g′(1) + 2(ηq)−1b2g′′(1)

]
+ o

(
a−1

)
. (5.10)

Proof: Substituting equation (3.3) and equation (3.5) in equation (3.6), we obtain

Rg(a) = E
[
g
(

N
n

∗
)]
− g(1). (5.11)

Expanding g(·) by Taylor’s series, we obtain for | U − 1 |≤| (N/n∗) − 1 |,

Rg(a) = n∗−1E[(N − n∗)g′(1)] + (2n∗)−1E
[
(N − n∗)2

n∗
g′′(U)

]
. (5.12)
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It immediately follows from equation (4.3) and the definition of U that, U
a.s.
−−→ 1 as a→ ∞. Utilizing

this result and the Lemma 3, we obtain from equation (5.12) that, for all

m > max
{
s + 2q−1b, t, s + 2q−1b(v∗ − u), s + 2q−1b(w − u)

}
,

as a→ ∞,

Rg(a) = n∗−1
[{
−(ηq)−1b(b + 1) +

1
2

+ o(1)
}

g′(1)
]

+ (n∗)−1
[
2(ηq)−1n∗b2 + o(a)

]
g′′(1),

and the theorem follows. 2

6. Applications of the proposed class of accelerated sequential procedures

In this section, we discuss some inferential problems based on various distributions useful in reliability
theory and provide their solutions by using the proposed class of accelerated sequential procedures
given in equation (3.1)–(3.2).

6.1. Minimum risk point estimation of the mean of a normal distribution

Let Xi, i = 1, 2, . . . , be a sequence of independent and identically distributed (i.i.d.) random variables
from a normal distribution N(µ, σ2), where µ ∈ (−∞,∞) and σ2 ∈ (0,∞) are the unknown mean
and variance respectively. Given a random sample X1, X2, . . . , Xn of size n ≥ 2, let us define X̄n =

n−1 ∑n
i=1 Xi (sample mean) and S 2

n = (n − 1)−1 ∑n
i=1(Xi − X̄n)2 (sample variance) as the estimators of µ

and σ2 respectively. The problem is to estimate the population mean µ. Suppose the loss incurred in
estimating µ by X̄n be

L
(
µ, X̄n

)
= A

(
X̄n − µ

)2
+ cn, (6.1)

where A is the known positive weight and c is known cost per unit observations. The risk correspond-
ing to the loss function (6.1) comes out to be

Rn(c) =
Aσ2

n
+ cn. (6.2)

The value n = n∗ which minimizes the risk Rn(c) is

n∗ =

(A
c

) 1
2

σ. (6.3)

Since σ2 is unknown, there does not exist any fixed sample size procedure which minimizes the
risk Rn(c) for all values of σ. Thus, motivated by equation (6.3), we adopt the following accel-
erated sequential procedure. Let us start with a sample of size m ≥ 2, where m = o(c1/2) and
limc→0 sup(m/n∗) < 1 and sampling sequentially with the stopping time L defined by

L = inf

n ≥ m; n ≥ η
(A

c

) 1
2

S n

 . (6.4)

Then, we move foreward ahead and take N − L observations, where

N = max

L,
⌊ (A

c

) 1
2

S L

⌋
+ 1

 . (6.5)
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After stopping, we estimate µ by X̄N . Comparing equation (6.3) with equation (2.1), we obtain θ =

σ2, a = (A/c)1/2, b = 1/2 and letting c→ 0 is equivalent to a→ ∞. Moreover, equation (2.2) holds
for q = 1, s = 1, θ̂n = S n

2 and θ = σ2. The risk associated with the accelerated sequential procedure
equations (6.4)–(6.5) is

RN(c) = cn∗
[
E

(
n∗

N

)
+ E

( N
n∗

)]
. (6.6)

Comparing equation (6.6) with equation (3.3), we obtain

g(x) = cn∗
[
x + x−1

]
, g′(x) = cn∗

[
1 − x−2

]
, g′′(x) = 2cn∗x−3,

where x stands for N/n∗. Further, we have

Rn∗ (c) = g(1) = 2cn∗.

Comparing g′′(x) with equation (3.4), we get u = −1, v = 0 and w = 3. Second-order approximations
for the expected sample size and ‘regret’ can be obtained by making appropriate substitutions in
theorems 1 and 2 and given by

E(N) = n∗ −
3
4
η +

1
2

+ o(1) and Rg(c) =
c
η

+ o(c). (6.7)

6.2. Minimum risk point estimation of the mean vector of a multivariate normal
distribution

Let Xi, i = 1, 2, . . . , be a sequence of independent observations from a p-variate normal population
Np(µ, σ2Σ), where µ is a p×1 unknown mean vector, σ2 is an unknown scalar and Σ is a known p× p
positive definite matrix. Having recorded a sample Xi, i = 1, 2, . . . , n of size n ≥ 2, let us define

X̄n = n−1
n∑

i=1

Xi,

σ̂2
n = {p (n − 1)}−1

n∑
i=1

(
Xi − X̄n

)T
Σ−1

(
Xi − X̄n

)
,

as the unbiased and consistent estimators of µ and σ2, respectively. The problem is to estimate the
mean vector µ. Let the loss incurred in estimating µ by X̄n be

Ln

(
µ, X̄n

)
= A

[(
X̄n − µ

)T
Σ−1

(
X̄n − µ

)]
+ cn, (6.8)

where A and c are known positive constants. The risk comes out to be

Rn(c) =
Apσ2

n
+ cn. (6.9)

The sample size n∗ which minimizes the risk is

n∗ =

(Ap
c

) 1
2

σ. (6.10)
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Since σ2 is unknown, we propose the following accelerated sequential strategy to solve the problem

L = inf

n ≥ m; n ≥ η
(Ap

c

) 1
2

σ̂n

 , (6.11)

N = max

L,
⌊ (Ap

c

) 1
2

σ̂L

⌋
+ 1

 . (6.12)

After stopping, we estimate µ by X̄N . Along with the lines of minimum risk estimation of normal
mean, one can easily obtain the associated second-order approximations on making appropriate com-
parisons with the proposed class of accelerated sequential procedures. These expressions are given
by

E(N) = n∗ −
3

4ηp
+

1
2

+ o(1),

Rg(c) =
c
ηp

+ o
(
c

1
2

)
.

6.3. Minimum risk point estimation of the location of a negative exponential distribution

Let Xi, i = 1, 2, . . . , be a sequence of i.i.d. random variables from the two parameter exponential
distribution having p.d. f .,

f (x; µ, σ) =
1
σ

exp
{
−

x − µ
σ

}
; x > µ, σ > 0,−∞ < µ < ∞,

where µ and σ are unknown location and scale parameters, respectively. Given a random sample
X1, X2, . . . , Xn from the distribution given above, let us define

Xn(1) = min (X1, X2, . . . , Xn) ,

σ̂n = (n − 1)−1
n∑

i=1

(
Xi − Xn(1)

)
,

as the estimators of µ and σ. The problem is to estimate µ. Let the loss incurred in estimating µ by
Xn(1) be

Ln
(
µ, Xn(1)

)
= A

(
Xn(1) − µ

)2
+ cn, (6.13)

where A and c are known positive constants. The risk comes out to be

Rn(c) =
4Aσ2

2n2 + cn. (6.14)

The sample size n∗ which minimizes the risk is

n∗ =

(
4A
c

) 1
3

σ
1
3 . (6.15)
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Since σ is unknown, we propose the following accelerated sequential strategy to solve the problem

L = inf

n ≥ m; n ≥ η
(

4A
c

) 1
3

σ̂
1
3
n

 , (6.16)

N = max

L,
⌊ (

4A
c

) 1
3

σ̂
1
3
L

⌋
+ 1

 . (6.17)

After stopping, we estimate µ by Xn(1). On making the appropriate comparisons, we can easily obtain
the values of average sample number and regret as

E(N) = n∗ −
3
9η

+
1
2

+ o(1),

Rg(c) =
4c
3η

+ o
(
c

1
3

)
.

6.4. Minimum risk estimation of the mean of an inverse Gaussian distribution

Let X1, X2, . . . , Xn be an i.i.d. sequence of inverse Gaussian random variables with a common density
function,

f (x; µ, λ) =

{
λ

2πx3

} 1
2

exp
{
−λ (x − µ)2

2xµ2

}
, x > 0,

where µ > 0 and λ > 0 are the mean and scale parameters, respectively. Having observed a random
sample X1, X2, . . . , Xn of size n(≥ 2) from the distribution given above, let us define, X̄n = n−1 ∑n

i=1 Xi

and λ̂−1
n = n−1 ∑n

i=1(Xi
−1 − X̄−1

n ) as the estimators of µ and λ−1, respectively. The problem is to
estimation µ when λ is unknown. Suppose the loss incurred in estimating µ by X̄n be

L
(
µ, X̄n

)
=

A
(
X̄n − µ

)2

µ3 + cnλk, (6.18)

where A, c and k are fixed known positive constants (Chaturvedi et al. , 2019a). The corresponding
risk is given by

Rn(c) =
A
nλ

+ cnλk. (6.19)

The value n = n∗ minimizing the risk is given by

n∗ =

(A
c

) 1
2
(

1
λ

) k+1
2

, (6.20)

and the corresponding minimum risk is

Rn∗ (c) = 2cλkn∗. (6.21)
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However, in the absence of any knowledge about λ, no fixed sample size procedure minimizes the risk
for all values of λ. In such situation, we adopt the following accelerated sequential procedure

L = inf

n ≥ m; n ≥ η
(A

c

) 1
2
(

1
λ̂n

) k+1
2
 , (6.22)

N = max

L,
⌊ (A

c

) 1
2
(

1
λ̂L

) k+1
2

⌋
+ 1

 . (6.23)

After stopping, we estimate µ by X̄N . On making the appropriate comparisons, second-order approxi-
mations for the expected sample size and regret are given by

E(N) = n∗ −
(k + 1)
(k + 3)

2η +
1
2

+ o(1),

Rg(c) = −
cλk

4η

(
k2 + 3

)
+ o

(
c

1
2

)
.

6.5. Minimum risk point estimation of the scale parameter of Pareto distribution

Let Xi, i = 1, 2, . . . , be a sequence of i.i.d. random variables from the Pareto distribution having
p.d. f .,

f (x; β, σ) = σ−1β
1
σ x−(1+σ−1); x ≥ β > 0, σ > 0, (6.24)

where β and σ are unknown scale and shape parameters respectively. We consider the transformation
Yi = log Xi, i = 1, 2, . . . , n. Now the random variables Y1,Y2, . . . ,Yn are i.i.d. with p.d. f .

g
(
y; log β, σ

)
= σ−1 exp

[
−

(y − log β)
σ

]
; y > log β.

Let Xn(1) = min(X1, X2, . . . , Xn) and Yn(1) = min(Y1,Y2, . . . ,Yn). We propose to estimate β by Xn(1),
which may be considered as equivalent to estimating log β by Yn(1). Let σ̂n = (n− 1)−1 ∑n

i=1(Yi −Yn(1))
be the estimator of σ. Suppose the loss incurred in estimating β by Xn(1) be

L
(
β, Xn(1)

)
= A

(
Xn(1)

β
− 1

)2

+ cn, (6.25)

where A and c are known positive constants. The above loss function can be approximated by
(Mukhopadhyay and Ekwo, 1987),

L
(
log β,Yn(1)

)
= A

(
Yn(1) − log β

)2
+ cn. (6.26)

The corresponding risk is

Rn =
2A
n2 σ

2 + cn. (6.27)

The value n = n∗ minimizing the risk is given by

n∗ =

(
4A
c

) 1
3

(σ)
2
3 , (6.28)
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and the corresponding minimum risk is

Rn∗ (c) =
3
2

cn∗. (6.29)

However, in the absence of any knowledge about σ, no fixed sample size procedure minimizes the
risk for all values of σ. In such situation, we adopt the following accelerated sequential procedure

L = inf

n ≥ m; n ≥ η
(

4A
c

) 1
3

(σ̂n)
2
3

 , (6.30)

N = max

L,
⌊ (

4A
c

) 1
3

(σ̂L)
2
3

⌋
+ 1

 . (6.31)

After stopping, we estimate log β by YN(1). By making appropriate comparisons with the proposed
class of accelerated sequential procedures, the expressions of expected sample size and regret are
given by

E(N) = n∗ −
5
9η

+
1
2

+ o(1), (6.32)

Rg(c) =
4c
3η

+ o
(
c

1
3

)
. (6.33)

7. Analysis from simulations and real data

We will now showcase our proposed accelerated sequential procedures using extensive simulation and
real data analyses. For brevity alone, we will only present results for estimating the scale parameter
of a Pareto distribution, which precisely corresponds to Section 6.5.

7.1. Analysis from simulations

The following simulation results are for the accelerated sequential procedure outlined in equations
(6.30)–(6.31). Table 1 contains these results. We first generated a set of pseudo random observations
at-a-time from a Pareto distribution which is as given in equation (6.24). Each row in Table 1 corre-
sponds to the results from 10,000 replications where results are tabulated for different combinations
of β, σ, A, c,m and n∗, where n∗ comes from equation (6.28). We first pick η (0 < η < 1) randomly
from a Uniform(0, 1) distribution and run the sequential procedure.

Each block in Table 1 shows n∗ (column 1), c (column 2), the values x̄min along with their standard
errors sx̄min (column 3), the values n̄, sn̄ (column 4), the ratio n̄/n∗ (column 5), the values rg (column
6) where r̄g denotes the “regret” function, κ (column 7), where κ = 4c/3η, as seen on the right side
of equation (6.33). One should hence expect r̄g to be close to κ. The values n̄ − n∗ (column 8) and δ
(column 9), where δ = −5/9η + 1/2 as seen on the right side of equation (6.32). One should hence
expect n̄ − n∗ to be close to δ.

As one can note, the values of n̄ seem to estimate n∗ reasonably well across the rows, which
become closer for larger values of n∗, indicating a superior first-order efficiency. The x̄min(= eȳmin )
values are also seen to be very good at estimating the true β value of 3 under each case. All the regret
values are also seen to be close to their corresponding κ values, whereas all the n̄ − n∗ values are also
seen to be close to the respective δ values, suggesting a good second-order efficiency.
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Table 1: Simulation results from 10,000 replications of the accelerated sequential methodology equations
(6.30)–(6.31) with m = 10, A = 100

β = 3, σ = 0.5, A = 100
n∗ c x̄min, sx̄min n̄, sn̄ n̄/n∗ r̄g κ n̄ − n∗ δ

50 8e−4 3.0299, 0.0009 49.54, 0.1339 0.99 0.0011 0.0004 −0.46 −0.76
100 1e−4 3.0161, 0.0005 99.27, 0.1793 0.99 1.4e−4 5.3e−4 −0.73 −0.75
250 6.4e−6 3.0060, 0.0002 249.85, 0.6742 0.99 3.3e−5 1.8e−5 −0.15 −0.31
500 8e−7 3.0030, 0.0001 499.61, 1.2893 0.99 7.7e−6 4.1e−6 −0.39 −0.59
650 3.7e−7 3.0023, 7.3e−5 649.36, 0.5544 0.99 5.3e−7 3e−7 −0.64 −0.44
800 2e−7 3.0018, 6e−5 799.49, 0.6218 0.99 3.2e−7 1.4e−7 −0.51 −0.58

Table 2: Analysis of breaking stress data using accelerated sequential procedure equations (6.30)–(6.31) with
m = 5, A = 100, β̂ = 0.39, σ̂ = 1.8188

n∗ c xmin n n/n∗ rg ξ

30 0.0490 0.32 28 0.93 0.0107 0.1025
50 0.0105 0.31 53 1.06 0.0026 0.0221
60 0.0061 0.35 62 1.03 0.0050 0.0128
70 0.0038 0.34 75 1.07 0.0018 0.0080
80 0.0025 0.38 82 1.03 0.0008 0.0054

7.2. Analysis from real data

We now present analysis using a real data, by implementing our proposed accelerated sequential strat-
egy. The dataset consists of breaking stress on carbon fibers (in Gba). This dataset has been studied
and analyzed by many researchers, Fatima and Roohi (2015) who fitted a transmuted exponentiated
Pareto distribution, Aljarrah et al. (2015) who fitted a Weibull-Pareto distribution to the data, Jayaku-
mar et al. (2018) or Nichols and Padgett (2006). A regular Pareto distribution also turned out be a
viable model, with a p-value of 0.17 using a Kolmogorov-Smirnov test.

The full data consists of breaking stress of 100 carbon fibers. Treating these data as the universe,
the maximum likelihood estimates were β̂ = 0.39 and σ̂ = 1.8188. An accelerated sequential proce-
dure equations (6.30)–(6.31) was then applied to draw observations from the full set of data as needed.
Table 2 contains these results, which are from a single run.

8. Concluding remarks and future research directions

We have developed a general class of accelerated sequential procedures and obtained the associated
second-order approximations for the expected sample size and ‘regret’ function. We have discussed
the applications of the proposed class to estimate the parameters of various distributions such as
normal, exponential, Pareto, inverse Gaussian, multivariate normal etc. Considering the special case
of Pareto distribution, we have also studied the associated properties via simulations and presented
a real data set on carbon fibers in support of the practical aspect of the proposed methodology. In
application part, we deliberately focus on one particular topic (minimum risk point estimation) for
brevity alone. One can easily tackle the problems of bounded risk point estimation and confidence
interval (region) estimation respectively using the proposed class of accelerated sequential procedures.
One may also consider these problems for some other models under various loss structures.

Moreover, there is a wide scope to extend the idea of this paper because several other problems fall
under the proposed set-up. One such area is “ranking and selection” where the problems like selection
of the largest of k normal means (Chaturvedi and Gupta, 1996) or selection of the best exponential
population (Mukhopadhyay and Solanky, 1992a) can be considered. Besides this, the problems of
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estimation of parameters in an intraclass model, random one-way model, linear regression model
(Mukhopadhyay, 1974; Chaturvedi 1987), multiple comparison procedure, estimation of contrasts in
the means (Bhargava and Srivastava, 1973). are the suitable choices to be tackled using the proposed
class of accelerated sequential procedures.

One may also think about the development of other multi-stage sampling designs (two-stage,
three-stage or k-stage) in a similar manner. A sequential sampling design has been already developed
by Joshi and Bapat (2020b).
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