• Title/Summary/Keyword: Accelerated lifetime

Search Result 200, Processing Time 0.03 seconds

A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode (촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.467-475
    • /
    • 2018
  • The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.

Accelerated Lifetime Data Analysis Using Quantile Regression (분위수 회귀를 이용한 가속수명시험 자료 분석)

  • Roh, Chee-Youn;Kim, Hee-Jeong;Na, Myung-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.631-638
    • /
    • 2008
  • Accelerated Lifetime Test is a method of estimation of lifetime quality characteristics under operation condition with the accelerated lifetime data obtained under accelerated stress. In this paper we propose estimation method with accelerated lifetime data using quantile regression. We apply the method to real data with Arrhenius and Inverse power model.

A study on OLED device's accelerated lifetime test (OLED 소자의 가속수명 시험에 관한 연구)

  • Choi, Young-Tae;Joe, Jae-Rib
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.73-79
    • /
    • 2008
  • Display's life time is defined as the time of 50% luminance drop. It was used luminance and temperature as accelerated factor to accelerated lifetime at test. When it's working jule-heat is generated and device's temperature is growing as any temperature because OLED is self-luminance display device. So we decided temperature condition is 25, $70^{\circ}C$, and luminance condition is $60{\sim}300cd/m^2$ in test. It's assumed accelerated lifetime model by result of the test.

Electrical Lifetime Estimation of a Relay by Accelerated Life Test (가속수명시험을 이용한 릴레이의 전기적 수명예측)

  • Kim, Jae-Jung;Chang, Seog-Weon;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.430-436
    • /
    • 2008
  • This paper proposes a way to predict electrical lifetime of a relay using Accelerated Life Testings (ALTs). The relay of interest mounting on printed circuit boards is usually under an inrush current stress. The inrush current is generated and accelerated through controlling a lamp switching device in the ALT. We find that the dominant failure mechanism under high levels of inrush current would be contact welding in the contact surface of the relay and the contact welding process is accelerated according to increase in inrush current. The electrical lifetime model based on Inverse Power Law in term of inrush current is proposed, and parameters characterizing relay's lifetime distribution are statistically estimated using ALTA 6 PRO software.

Storage lifetime estimation of detonator in Fuse MTSQ KM577A1 (기계식 시한 신관 KM577A1용 기폭관 저장수명 예측)

  • Chang, Il-Ho;Park, Byung-Chan;Hwang, Taek-Sung;Hong, Suk-Whan;Back, Seung-Jun;Son, Young-Kap
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • A fuze detonator comprising star shells is an important device so that its failure usually leads to failure of the shells. In this paper, accelerated degradation tests of RD1333 (lead azide) using temperature stress were performed, and then degradation data of explosive power for the detonator were analyzed to predict the storage lifetime of detonator. Degradation data analysis to estimate the storage lifetime is based on a distribution-based degradation process. Statistical distribution parameters of explosive power degradation measures at each time were estimated for each temperature level, and then reliability of the detonator for each accelerated temperature level was estimated using both time-varying distribution parameters and critical level of explosive power. Arrhenius model was applied to estimate storage lifetime of the detonator under the field temperature condition. Accelerated distribution-based degradation analysis to estimate storage lifetime is explained in detail, and estimation results are compared to field data of storage lifetime in this paper.

An Accelerated Degradation Test of Nuclear Power Plants Communication Cable Jacket (원자력 발전소용 통신케이블 자켓의 가속열화시험)

  • Jung, Jae Han;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.969-980
    • /
    • 2017
  • Purpose: The purpose of this study was to estimate the lifetime, and verify the target lifetime at steady state temperature, of communication cable jackets used in nuclear power plants. Method: This study was completed according to test and analysis methods required by international standards. After measuring the residual elongation(%) of specimens at specific points in time with the accelerated degradation test, average failure time of each temperature was computed. Thus, the activation energy could be derived by applying the temperature-Arrhenius law to estimate cable jacket lifetime at steady state temperature. Results: The cable jacket lifetime was estimated as 363.8 years assuming a normal nuclear power plant operating temperature of $90^{\circ}C$. Conclusion: To ascertain stable operating conditions for a nuclear power plant, accelerated degradation tests were performed according to the Arrhenius law for components of the nuclear power plants. The lifetime was estimated from the degradation data collected during the accelerated degradation test.

Time-Temperature Superposition Behavior for Accelerated Fatigue Lifetime Testing of Polycarbonate(PC) (폴리카보네이트(PC)의 가속 피로수명 시험을 위한 시간-온도 호환성)

  • Kim Gyu-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.976-984
    • /
    • 2006
  • Time-temperature superposition has been studied to determine the long-term fatigue life over millions of cycles for glassy polymers. π le superposition is supposed to make an accelerated lifetime testing (ALT) technique possible. Dog-bone shaped specimens made of carbon filled Polycarbonate (PC) were tested under fatigue, based on the stress-lifetime approach (S-N curve). Fatigue-induced localized yield-like deformation is considered as the defect leading to fatigue and its evolution behavior is characterized by a modified energy activation model in which temperature is considered as fatigue acceleration factor. This model allows the reduced time concept to account for effects of different temperature in short-term fatigue data to determine long-term fatigue life through the use of time-temperature superposition that is applicable under a low frequency and isothermal conditions. The experimental results validated that the proposed technique could be a possible method for accelerated lifetime testing (ALT) of time-dependent polymeric materials.

Lifetime Prediction of RF SAW Duplexer Using Accelerated Life Testing (가속수명시험을 이용한 RF SAW 듀플렉서의 수명예측)

  • Kim, Young-Goo;Kim, Tae-Hong;Kang, Sang-Gee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.616-618
    • /
    • 2014
  • In this paper, we designed the accelerated life testing(ALT) and presented the lifetime prediction method of the RF SAW duplexer. We determined RF input power as an accelerated stress when designing an accelerating life testing and defined the lifetime of the duplexer as the period during which the insertion loss increased by 0.5[dB]. Lifetime prediction results of duplexer was estimated for 82,900hours at an ambient temperature of $85^{\circ}C$ and RF input power of 30[dBm].

Accelerated Life Test of Knife Protection Fabrics for Cut Resistance (절단 방지용 방검소재의 가속수명시험)

  • Chang, Gap-Shik;Jung, Ye-Lee;Jeon, Byong-Dae
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Purpose : UHMWPE (Ultra-high-molecular-weight-polyethylene) is one of the most widely used material in knife protection clothes because of high strength, elasticity, and light weight. The purpose of this study is to develop the accelerated life test method and predict the lifetime for the knife protection fabric composed by UHMWPE. Methods : In this study, degradation characteristics of UHMWPE fibers and knife protection fabric for cut resistance were evaluated under the hydrolysis and photo-degradation conditions. It was found out that the degradation rate of retained tensile strength was more significant in the photo-degradation than hydrolysis. Therefore, the failure time was determined as the time that the retained tensile strength in photo-degradation is less than 50%. Considering an acceleration factor for irradiance and exposure time, the lifetime was predicted from the calculated failure time. Results : As a result of the accelerated life test, the $B_{10}$ lifetime of knife protection fabric composed by UHMWPE fibers is estimated as 2.8 years for a 90% statistical confidence level. Conclusion: Since the lifetime is predicted by the view-point of radiant exposure in this study, there is a possibility that the estimated lifetime may differ from the actual lifetime. However, it is considered as an useful methodology to estimate the long-term lifetime of knife protection fabrics.

Planning of Accelerated Degradation Tests: In the Case Where the Performance Degradation Characteristic Follows the Lognormal Distribution (성능특성치의 열화가 대수정규분포를 따를 때의 가속열화시험 모형 개발)

  • Lim, Heonsang;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2018
  • Purpose: This article provides a mathematical model for the accelerated degradation test when the performance degradation characteristic follows the lognormal distribution. Method: For developing test plans, the total number of test units and the test time are determined based on the minimization of the asymptotic variance of the q-th quantile of the lifetime distribution at the use condition. Results: The mathematical model for the accelerated degradation test is provided. Conclusion: Accelerated degradation test method is widely used to evaluate the product lifetime within a resonable amount of cost and time. In this article. a mathematical model for the accelerated degradation test method is newly developed for this purposes.