• Title/Summary/Keyword: Accelerated Degradation Testing

Search Result 58, Processing Time 0.03 seconds

Degradation Mechanism of MoxW1-xSi2 Heating Elements Fabricated by SHS Process (SHS 공정에 의해 제조된 MoxW1-xSi2 발열체의 열화메커니즘)

  • Lee, Dong-Won;Lee, Sang-Hun;Kim, Yong-Nam;Lee, Sung-Chul;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.631-636
    • /
    • 2017
  • The degradation mechanism of $Mo_xW_{1-x}Si_2$ ultrahigh-temperature heating elements fabricated by self-propagating high-temperature synthesiswas investigated. The $Mo_xW_{1-x}Si_2$ specimens (with and without post-annealing) were subjected to ADTs (accelerated degradation tests) at temperatures up to $1,700^{\circ}C$ at heating rates of 3, 4, 5, 7, and $14^{\circ}C/min$. The surface loads of all the specimen heaters were increased with the increase in the target temperature. For the $Mo_xW_{1-x}Si_2$ specimens without annealing, many pores and secondary-phase particles were observed in the microstructure; the surface load increased to $23.9W/cm^2$ at $1,700^{\circ}C$, while the bending strength drastically reduced to 242 MPa. In contrast, the $Mo_xW_{1-x}Si_2$ specimens after post-annealing retained $single-Mo_xW_{1-x}Si_2$ phases and showed superior durability after the ADT. Consequently, it is thought that the formation of microcracks and coarse secondary phases during the ADT are the main causes for the degraded performance of the $Mo_xW_{1-x}Si_2$ heating elements without post-annealing.

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Degradation Characteristics of Structural Adhesives (구조용 접착제의 열화 특성 연구)

  • Hwang, Young-Eun;Oh, Jin-Oh;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.443-446
    • /
    • 2009
  • In this study, a series of degradation test for structural adhesives was performed to investigate the possibility of replacement of the alternative adhesives to the conventional adhesives. Four types of the adhesives were exposed to combined environmental conditions over 1000 hours at an accelerated aging tester, which can simulate natural weather conditions such temperature, moisture and ultraviolet. Mechanical and chemical properties of the adhesives were evaluated through material testing system and FT/IR spectrometer. According to the results, the conventional adhesives can be replaced by the alternative adhesives because the alternative adhesives were more stable to environmental conditions rather than the conventional adhesives.

  • PDF

Reliability testing of InGaAs Waveguide Photodiodes for 40-Gbps Optical Receiver Applications (40-Gbps급 InGaAs 도파로형 포토다이오드의 신뢰성 실험)

  • Joo, Han-Sung;Ko, Young-Don;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.13-16
    • /
    • 2004
  • The reliability of 1.550m-wavelength InGaAs mesa waveguide photodiodes(WGPDs), which developed for 40-Gbps optical receiver applications, fabricated by metal organic chemical vapor deposition is investigated. Reliability is examined by both high-temperature storage tests and the accelerated life tests by monitoring dark current and breakdown voltage. The median device lifetime and the activation energy of the degradation mechanism are computed for WGPD test structures. From the accelerated life test results, the activation energy of the degradation mechanism and median lifetime of these devices in room temperature are extracted from the log-normal failure model by using average lifetime and the standard deviation of that lifetime in each test temperature. It is found that the WGPD structure yields devices with the median lifetime of much longer than $10^6$ h at practical use conditions. Consequently, this WGPD structure has sufficient characteristics for practical 40-Gbps optical receiver modules.

  • PDF

Assessment of Pipe Wall Loss Using Guided Wave Testing (유도초음파기술을 이용한 배관 감육 평가)

  • Joo, Kyung-Mun;Jin, Seuk-Hong;Moon, Yong-Sig
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Flow accelerated corrosion(FAC) of carbon steel pipes in nuclear power plants has been known as one of the major degradation mechanisms. It could have bad influence on the plant reliability and safety. Also detection of FAC is a significant cost to the nuclear power plant because of the need to remove and replace insulation. Recently, the interest of the guided wave testing(GWT) has grown because it allows long range inspection without removing insulation of the pipe except at the probe position. If GWT can be applied to detection of FAC damages, it will can significantly reduce the cost for the inspection of the pipes. The objective of this study was to determine the capability of GWT to identify location of FAC damages. In this paper, three kinds of techniques were used to measure the amplitude ratio between the first and the second welds at the elbow area of mock-ups that contain real FAC damages. As a result, optimal inspection technique and minimum detectability to detect FAC damages drew a conclusion.

Derating design approach of aluminum electrolytic capacitor for reliability improvement (알루미늄 전해 커패시터의 신뢰성 향상을 위한 Derating 설계 연구)

  • Min, Dae-June;Kim, Jae-Jung;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1712-1717
    • /
    • 2007
  • This paper presents a derating design approach for reliability improvement of an aluminum electrolytic capacitor. The capacitor, usually mounted in a printed circuit board, is used to stabilize the circuit. The main failure mechanism of interest is dry-up of the electrolyte that is mainly caused by two stresses-temperature and voltage. The lifetime under these stresses is modeled as a function of these stresses and time using accelerated life testing. Quantitative variation in the lifetime, according to variations in these stresses, is investigated to perform the derating design of the capacitor so that the stress levels are selected to achieve required reliability measures for reliability improvement. Moreover, sensitivity analysis shows which stress would be a more important factor determining the lifetime.

  • PDF

Performance and Durability of PEMFC MEAs Fabricated by Various Methods (PEMFC MEA 제조 방법에 따른 성능 및 내구성)

  • Jeong, Jaehyeun;Song, Myunghyun;Chung, Hoibum;Na, Ilchai;Lee, Junghoon;Lee, Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.558-563
    • /
    • 2014
  • To study the effects of fabrication methods on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a Dr blade method, a spray method, screen print method and screen print + spray method. The performance of single cells assembled with the prepared MEAs were initially measured and compared. Electrode accelerated stress testing (AST) involving a potentiostatic step-wave with 10 s at 0.6 V followed by 30 s at 0.9 V was applied to test durability of MEAs. Before and after 6,000cycles of the AST, I-V curves, impedance spectra, cyclic voltammograms, linear sweep voltammetry (LSV) and transmission electron microscope (TEM) were measured. Under the operating conditions, the Dr Blde MEA exhibited the highest initial performance. After electrode accelerated stress testing, screen print + spray MEA showed lowest degradation rate.

Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers

  • Shin, Sang-Mi;Kim, Seong-Hun;Song, Jun-Kwang
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.

Research on Ultraviolet Light Degradation According to Types of Encapsulants for PV Modules (태양광 모듈용 봉지재 종류에 따른 자외선 광열화 연구)

  • Seungah Ur;RakHyun Jeong;JuHwi Kim;Chanyong Lee;Lee Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.108-113
    • /
    • 2023
  • Pressure to reduce costs in the current solar market is driving the development and implementation of new module designs and prompting the use of new materials and components. In order to utilize the variability of each material that makes up the module, it is essential to understand the basic characteristics of the material. In this article, we evaluate light degradation after UV irradiation as an encapsulation material. Measure and analyze the results of various characteristic tests for discoloration, optical and electrical property degradation before and after UV accelerated testing. To evaluate weathering stability, UV tests were performed comparing existing EVA and UVT-EVA, POE and improved low-cost POE. Even in the weather resistance test with a total UV exposure of 60 kW/m2, the properties of the encapsulants were mostly stable. EVA and POE-based encapsulants showed slight differences, and these slight differences are believed to pose a threat to long-term stability. This study is a basic analysis of encapsulation research for PV modules and will be helpful in understanding future development and encapsulant properties.

Accelerated Test Program for Durability Characteristics of GFRP Rebars (내구특성 파악을 위한 GFRP 보강근의 촉진실험 연구)

  • Kim, Hyeong-Yeol;You, Young-Jun;Park, Young-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.157-164
    • /
    • 2006
  • This paper presents the durability characteristics of commercially available CFRP rebars under various environmental conditions. Two types of GFRP rebars were tested by using an accelerated aging method. A total of 264 rebar specimens were conditioned up to 132 days in the moisture, chloride. alkaline, and freeze-thaw environmental conditions. The durability characteristics of conditioned rebars were obtained by comparing the tensile strength, horizontal shear strength, and elastic modulus between the unconditioned and conditioned GFRP rebars. The test results indicated that the mechanical properties of GFRP were significantly reduced after conditioning. Long-term degradation of GFRP rebars was also estimated using the results of a short-term durability test.